You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ChatGLM-6B/ptuning/README.md

8.1 KiB

ChatGLM-6B-PT

本仓库实现了对于 ChatGLM-6B 模型基于 P-Tuning v2 的微调。P-Tuning v2 将需要微调的参数量减少到原来的 0.1%再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。

下面以 ADGEN (广告生成) 数据集为例介绍代码的使用方法。

Read this in English.

软件依赖

运行微调需要4.27.1版本的transformers。除 ChatGLM-6B 的依赖之外,还需要按照以下依赖

pip install rouge_chinese nltk jieba datasets

使用方法

下载数据集

ADGEN 数据集任务为根据输入content生成一段广告词summary

{
    "content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
    "summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}

Google Drive 或者 Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 AdvertiseGen 目录放到本目录下。

训练

运行以下指令进行训练:

bash train.sh

train.sh 中的 PRE_SEQ_LENLR 分别是 soft prompt 长度和训练的学习率可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来被原始模型的量化等级,不加此选项则为 FP16 精度加载。

在默认配置 quantization_bit=4per_device_train_batch_size=1gradient_accumulation_steps=16INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size 的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。

推理

evaluate.sh 中的 CHECKPOINT 更改为训练时保存的 checkpoint 名称,运行以下指令进行模型推理和评测:

bash evaluate.sh

评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在 ./output/adgen-chatglm-6b-pt-8-1e-2/generated_predictions.txt

例子

示例1

  • Input: 类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞
  • Label: 简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。
  • Output[微调前]: 这件上衣的材质是牛仔布,颜色是白色,风格是简约,图案是刺绣,衣样式是外套,衣款式是破洞。
  • Output[微调后]: 这是一款简约的牛仔外套,破洞设计,将牛仔布破洞,带来一种随意与个性。破洞的牛仔外套,展现出时尚气息,带来一种休闲感。同时,刺绣图案,让整件外套更加立体。

示例2

  • Input: 类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
  • Label: 文艺个性的印花连衣裙,藏青色底蕴,低调又大气,撞色太阳花分布整个裙身,绚丽而美好,带来时尚减龄的气质。基础款的舒适圆领,简约不失大方,勾勒精致脸庞。领后是一粒包布扣固定,穿脱十分方便。前片立体的打褶设计,搭配后片压褶的做工,增添层次和空间感,显瘦又有型。
  • Output[微调前]: 类型#裙版型#显瘦风格#文艺风格#简约图案#印花图案#撞色裙下摆#压褶裙长#连衣裙裙领型#圆领 1. 连衣裙:简约风格,裙长为膝盖以上,裙领型为圆领。2. 裙下摆:压褶设计,使裙摆呈现出流畅的褶皱效果。3. 裙领型:裙领型为圆领,使穿上连衣裙后更加有型。4. 版型:采用显瘦设计,让连衣裙看起来更加苗条。5. 风格:文艺风格,让连衣裙更加有内涵和品味。6. 图案:印花设计,在连衣裙上印有独特的图案。7. 撞色:采用撞色设计,让连衣裙在色彩上更加鲜明、富有层次感。
  • Output[微调后]: 这是一款文艺范的连衣裙,以印花为元素,采用简约的印花,既能够突出文艺气质,又能够展现简约风。在印花的同时又有领子和裙摆的压褶设计,更加凸显文艺气质。简约而不会过于单调,搭配出街,穿着十分舒适。

评估结果

P-tuning v2 LoRA
BLEU-4 7.78 6.25
Rouge-1 31.34 28.58
Rouge-2 7.34 4.42
Rouge-l 25.26 17.56
Training Loss 3.80 3.36

实验设置

max_source_length=64
max_target_length=64
per_device_train_batch_size=1
gradient_accumulation_steps=16
max_steps=3000
P-tuning v2
pre_seq_len=128
learning_rate=2e-2
quantization_bit=4
LoRA
learning_rate=5e-4

实现采用的是 simple_thu_chatglm6b

模型部署

将对应的demo或代码中的THUDM/chatglm-6b换成经过 P-Tuning 微调之后 checkpoint 的地址(在示例中为 ./output/adgen-chatglm-6b-pt-8-1e-2/checkpoint-3000)。注意,目前的微调还不支持多轮数据,所以只有对话第一轮的回复是经过微调的。

使用自己的数据集

修改 train.shevaluate.sh 中的 train_filevalidation_filetest_file为你自己的 JSON 格式数据集路径,并将 prompt_columnresponse_column 改为 JSON 文件中输入文本和输出文本对应的 KEY。

对话数据集

如需要使用多轮对话数据对模型进行微调,可以提供聊天历史,例如

{
    "prompt": "是的。上下水管都好的",
    "response": "那就要检查线路了,一般风扇继电器是由电脑控制吸合的,如果电路存在断路,或者电脑坏了的话会出现继电器不吸合的情况!",
    "history": [
        [
            "长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线",
            "用电脑能读数据流吗?水温多少"
        ],
        [
            "95",
            "上下水管温差怎么样啊?空气是不是都排干净了呢?"
        ]
    ]
}

训练时需要指定 --history_column 为数据中聊天历史的 key在此例子中是 history),将自动把聊天历史拼接,例如:

  • Input

    [Round 0]
    问:长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线
    答:用电脑能读数据流吗?水温多少
    [Round 1]
    问:95
    答:上下水管温差怎么样啊?空气是不是都排干净了呢?
    [Round 2]
    问:是的。上下水管都好的
    答:
    
  • Label

    那就要检查线路了,一般风扇继电器是由电脑控制吸合的,如果电路存在断路,或者电脑坏了的话会出现继电器不吸合的情况!
    

要注意超过输入长度 max_source_length 的内容会被截。

可以参考以下指令:

bash train_chat.sh

TODO

  • Support for chat data
  • Support for full finetuning

引用

@inproceedings{liu2022p,
  title={P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks},
  author={Liu, Xiao and Ji, Kaixuan and Fu, Yicheng and Tam, Weng and Du, Zhengxiao and Yang, Zhilin and Tang, Jie},
  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
  pages={61--68},
  year={2022}
}