mirror of https://github.com/THUDM/ChatGLM-6B
109 lines
3.8 KiB
Python
109 lines
3.8 KiB
Python
from fastapi import FastAPI, Request
|
||
from transformers import AutoTokenizer, AutoModel
|
||
import uvicorn
|
||
import json
|
||
import datetime
|
||
import torch
|
||
import threading
|
||
|
||
DEVICE = "cuda"
|
||
DEVICE_ID = "0"
|
||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||
|
||
stream_buffer = {}
|
||
|
||
|
||
def torch_gc():
|
||
if torch.cuda.is_available():
|
||
with torch.cuda.device(CUDA_DEVICE):
|
||
torch.cuda.empty_cache()
|
||
torch.cuda.ipc_collect()
|
||
|
||
|
||
app = FastAPI()
|
||
|
||
|
||
def stream_item(prompt, history, max_length, top_p, temperature):
|
||
global model, tokenizer
|
||
global stream_buffer
|
||
for response, history in model.stream_chat(tokenizer, prompt, history=history, max_length=max_length, top_p=top_p,
|
||
temperature=temperature):
|
||
query, response = history[-1]
|
||
now = datetime.datetime.now()
|
||
stream_buffer[prompt] = {
|
||
"response": response, "stop": False, "history": history,"time": now}
|
||
stream_buffer[prompt]["stop"] = True
|
||
torch_gc()
|
||
|
||
|
||
def removeTimeoutBuffer():
|
||
global stream_buffer
|
||
for key in stream_buffer.copy():
|
||
diff = datetime.datetime.now() - stream_buffer[key]["time"]
|
||
seconds = diff.total_seconds()
|
||
print(key + ": 已存在" + str(seconds) + "秒")
|
||
if seconds > 120:
|
||
if stream_buffer[key]["stop"]:
|
||
del stream_buffer[key]
|
||
print(key + ":已被从缓存中移除")
|
||
else:
|
||
stream_buffer[key]["stop"] = True
|
||
print(key + ":已被标识为结束")
|
||
|
||
|
||
@app.post("/stream")
|
||
async def create_item(request: Request):
|
||
# 删除过期的buffer
|
||
removeTimeoutBuffer()
|
||
# 全局变量buffer
|
||
global stream_buffer
|
||
# 获取入参
|
||
json_post_raw = await request.json()
|
||
json_post = json.dumps(json_post_raw)
|
||
json_post_list = json.loads(json_post)
|
||
prompt = json_post_list.get('prompt')
|
||
history = json_post_list.get('history')
|
||
max_length = json_post_list.get('max_length')
|
||
top_p = json_post_list.get('top_p')
|
||
temperature = json_post_list.get('temperature')
|
||
# 判断是否已在生成,只有首次才调stream_chat
|
||
now = datetime.datetime.now()
|
||
if stream_buffer.get(prompt) is None:
|
||
stream_buffer[prompt] = {"response": "", "stop": False, "history": [],"time": now}
|
||
# 在线程中调用stream_chat
|
||
sub_thread = threading.Thread(target=stream_item, args=(prompt, history, max_length if max_length else 2048,
|
||
top_p if top_p else 0.7, temperature if temperature else 0.95))
|
||
sub_thread.start()
|
||
# 异步返回response
|
||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||
response = stream_buffer[prompt]["response"]
|
||
history = stream_buffer[prompt]["history"]
|
||
# 如果stream_chat调用完成,给返回加一个停止词[stop]
|
||
if stream_buffer[prompt]["stop"]:
|
||
response = response + '[stop]'
|
||
answer = {
|
||
"response": response,
|
||
"history": history,
|
||
"status": 200,
|
||
"time": time
|
||
}
|
||
log = "[" + time + "] " + '", prompt:"' + \
|
||
prompt + '", response:"' + repr(response) + '"'
|
||
print(log)
|
||
|
||
return answer
|
||
|
||
|
||
if __name__ == '__main__':
|
||
#tokenizer = AutoTokenizer.from_pretrained(
|
||
# "THUDM/chatglm-6b", trust_remote_code=True)
|
||
#model = AutoModel.from_pretrained(
|
||
# "THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||
# mkdir model
|
||
# cp ~/.cache/huggingface/hub/models--THUDM--chatglm-6b/snapshots/658202d88ac4bb782b99e99ac3adff58b4d0b813 ./model
|
||
model_path = "./model/"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
|
||
model.eval()
|
||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|