from fastapi import FastAPI, Request from transformers import AutoTokenizer, AutoModel import uvicorn import json import datetime import torch import threading DEVICE = "cuda" DEVICE_ID = "0" CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE stream_buffer = {} def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect() app = FastAPI() def stream_item(prompt, history, max_length, top_p, temperature): global model, tokenizer global stream_buffer for response, history in model.stream_chat(tokenizer, prompt, history=history, max_length=max_length, top_p=top_p, temperature=temperature): query, response = history[-1] now = datetime.datetime.now() stream_buffer[prompt] = { "response": response, "stop": False, "history": history,"time": now} stream_buffer[prompt]["stop"] = True torch_gc() def removeTimeoutBuffer(): global stream_buffer for key in stream_buffer.copy(): diff = datetime.datetime.now() - stream_buffer[key]["time"] seconds = diff.total_seconds() print(key + ": 已存在" + str(seconds) + "秒") if seconds > 120: if stream_buffer[key]["stop"]: del stream_buffer[key] print(key + ":已被从缓存中移除") else: stream_buffer[key]["stop"] = True print(key + ":已被标识为结束") @app.post("/stream") async def create_item(request: Request): # 删除过期的buffer removeTimeoutBuffer() # 全局变量buffer global stream_buffer # 获取入参 json_post_raw = await request.json() json_post = json.dumps(json_post_raw) json_post_list = json.loads(json_post) prompt = json_post_list.get('prompt') history = json_post_list.get('history') max_length = json_post_list.get('max_length') top_p = json_post_list.get('top_p') temperature = json_post_list.get('temperature') # 判断是否已在生成,只有首次才调stream_chat now = datetime.datetime.now() if stream_buffer.get(prompt) is None: stream_buffer[prompt] = {"response": "", "stop": False, "history": [],"time": now} # 在线程中调用stream_chat sub_thread = threading.Thread(target=stream_item, args=(prompt, history, max_length if max_length else 2048, top_p if top_p else 0.7, temperature if temperature else 0.95)) sub_thread.start() # 异步返回response time = now.strftime("%Y-%m-%d %H:%M:%S") response = stream_buffer[prompt]["response"] history = stream_buffer[prompt]["history"] # 如果stream_chat调用完成,给返回加一个停止词[stop] if stream_buffer[prompt]["stop"]: response = response + '[stop]' answer = { "response": response, "history": history, "status": 200, "time": time } log = "[" + time + "] " + '", prompt:"' + \ prompt + '", response:"' + repr(response) + '"' print(log) return answer if __name__ == '__main__': #tokenizer = AutoTokenizer.from_pretrained( # "THUDM/chatglm-6b", trust_remote_code=True) #model = AutoModel.from_pretrained( # "THUDM/chatglm-6b", trust_remote_code=True).half().cuda() # mkdir model # cp ~/.cache/huggingface/hub/models--THUDM--chatglm-6b/snapshots/658202d88ac4bb782b99e99ac3adff58b4d0b813 ./model model_path = "./model/" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda() model.eval() uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)