pull/197/merge
CPPBS 2023-04-04 14:23:14 +08:00 committed by GitHub
commit f44f7a3756
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 94 additions and 5 deletions

View File

@ -5,6 +5,12 @@ from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
# 按需修改,目前只支持 4/8 bit 量化
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
#如果你的内存不足,可以直接加载量化后的模型:
#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
model = model.eval()
os_name = platform.system()

24
cli_demo_cpu.py Normal file
View File

@ -0,0 +1,24 @@
import os
import platform
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
model = model.eval()
os_name = platform.system()
history = []
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
while True:
query = input("\n用户:")
if query == "stop":
break
if query == "clear":
history = []
command = 'cls' if os_name == 'Windows' else 'clear'
os.system(command)
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
continue
response, history = model.chat(tokenizer, query, history=history)
print(f"ChatGLM-6B{response}")

View File

@ -2,7 +2,14 @@ from transformers import AutoModel, AutoTokenizer
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
#GPU 部署
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
# 按需修改,目前只支持 4/8 bit 量化
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
#如果你的内存不足,可以直接加载量化后的模型:
#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
model = model.eval()
MAX_TURNS = 20
@ -34,12 +41,12 @@ with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style(
txt = gr.Textbox(show_label=False, placeholder="输入文本并按Enter键", lines=11).style(
container=False)
with gr.Column(scale=1):
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="最大长度", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
button = gr.Button("Generate")
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="氛围", interactive=True)
button = gr.Button("生成")
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
demo.queue().launch(share=False, inbrowser=True)

52
web_demo_cpu.py Normal file
View File

@ -0,0 +1,52 @@
from transformers import AutoModel, AutoTokenizer
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
#GPU 部署
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
# 按需修改,目前只支持 4/8 bit 量化
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
#如果你的内存不足,可以直接加载量化后的模型:
#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
model = model.eval()
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
def predict(input, max_length, top_p, temperature, history=None):
if history is None:
history = []
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
updates = []
for query, response in history:
updates.append(gr.update(visible=True, value="用户:" + query))
updates.append(gr.update(visible=True, value="ChatGLM-6B" + response))
if len(updates) < MAX_BOXES:
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
yield [history] + updates
with gr.Blocks() as demo:
state = gr.State([])
text_boxes = []
for i in range(MAX_BOXES):
if i % 2 == 0:
text_boxes.append(gr.Markdown(visible=False, label="提问:"))
else:
text_boxes.append(gr.Markdown(visible=False, label="回复:"))
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(show_label=False, placeholder="输入文本并按Enter键", lines=11).style(
container=False)
with gr.Column(scale=1):
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="最大长度", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="氛围", interactive=True)
button = gr.Button("生成")
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
demo.queue().launch(share=False, inbrowser=True)