diff --git a/cli_demo.py b/cli_demo.py index da80fff..89f4747 100644 --- a/cli_demo.py +++ b/cli_demo.py @@ -5,6 +5,12 @@ from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() +# 按需修改,目前只支持 4/8 bit 量化 +#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda() +#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) +#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() +#如果你的内存不足,可以直接加载量化后的模型: +#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float() model = model.eval() os_name = platform.system() diff --git a/cli_demo_cpu.py b/cli_demo_cpu.py new file mode 100644 index 0000000..ea23673 --- /dev/null +++ b/cli_demo_cpu.py @@ -0,0 +1,24 @@ +import os +import platform +from transformers import AutoTokenizer, AutoModel + +tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) +model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() +model = model.eval() + +os_name = platform.system() + +history = [] +print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序") +while True: + query = input("\n用户:") + if query == "stop": + break + if query == "clear": + history = [] + command = 'cls' if os_name == 'Windows' else 'clear' + os.system(command) + print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序") + continue + response, history = model.chat(tokenizer, query, history=history) + print(f"ChatGLM-6B:{response}") diff --git a/web_demo.py b/web_demo.py index 88a6dc8..158cf37 100644 --- a/web_demo.py +++ b/web_demo.py @@ -2,7 +2,14 @@ from transformers import AutoModel, AutoTokenizer import gradio as gr tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) -model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() +#GPU 部署 +model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() +# 按需修改,目前只支持 4/8 bit 量化 +#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda() +#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) +#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() +#如果你的内存不足,可以直接加载量化后的模型: +#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float() model = model.eval() MAX_TURNS = 20 @@ -34,12 +41,12 @@ with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=4): - txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style( + txt = gr.Textbox(show_label=False, placeholder="输入文本并按Enter键", lines=11).style( container=False) with gr.Column(scale=1): - max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) + max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="最大长度", interactive=True) top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) - temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) - button = gr.Button("Generate") + temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="氛围", interactive=True) + button = gr.Button("生成") button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes) demo.queue().launch(share=False, inbrowser=True) diff --git a/web_demo_cpu.py b/web_demo_cpu.py new file mode 100644 index 0000000..20dcee9 --- /dev/null +++ b/web_demo_cpu.py @@ -0,0 +1,52 @@ +from transformers import AutoModel, AutoTokenizer +import gradio as gr + +tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) +#GPU 部署 +model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() +# 按需修改,目前只支持 4/8 bit 量化 +#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda() +#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) +#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() +#如果你的内存不足,可以直接加载量化后的模型: +#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float() +model = model.eval() + +MAX_TURNS = 20 +MAX_BOXES = MAX_TURNS * 2 + + +def predict(input, max_length, top_p, temperature, history=None): + if history is None: + history = [] + for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, + temperature=temperature): + updates = [] + for query, response in history: + updates.append(gr.update(visible=True, value="用户:" + query)) + updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response)) + if len(updates) < MAX_BOXES: + updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) + yield [history] + updates + + +with gr.Blocks() as demo: + state = gr.State([]) + text_boxes = [] + for i in range(MAX_BOXES): + if i % 2 == 0: + text_boxes.append(gr.Markdown(visible=False, label="提问:")) + else: + text_boxes.append(gr.Markdown(visible=False, label="回复:")) + + with gr.Row(): + with gr.Column(scale=4): + txt = gr.Textbox(show_label=False, placeholder="输入文本并按Enter键", lines=11).style( + container=False) + with gr.Column(scale=1): + max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="最大长度", interactive=True) + top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) + temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="氛围", interactive=True) + button = gr.Button("生成") + button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes) +demo.queue().launch(share=False, inbrowser=True)