mirror of https://github.com/THUDM/ChatGLM-6B
Merge 4cebde7f39
into 801b1bb576
commit
f44f7a3756
|
@ -5,6 +5,12 @@ from transformers import AutoTokenizer, AutoModel
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||||
|
# 按需修改,目前只支持 4/8 bit 量化
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
|
||||||
|
#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||||
|
#如果你的内存不足,可以直接加载量化后的模型:
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
|
|
||||||
os_name = platform.system()
|
os_name = platform.system()
|
||||||
|
|
|
@ -0,0 +1,24 @@
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
os_name = platform.system()
|
||||||
|
|
||||||
|
history = []
|
||||||
|
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||||
|
while True:
|
||||||
|
query = input("\n用户:")
|
||||||
|
if query == "stop":
|
||||||
|
break
|
||||||
|
if query == "clear":
|
||||||
|
history = []
|
||||||
|
command = 'cls' if os_name == 'Windows' else 'clear'
|
||||||
|
os.system(command)
|
||||||
|
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||||
|
continue
|
||||||
|
response, history = model.chat(tokenizer, query, history=history)
|
||||||
|
print(f"ChatGLM-6B:{response}")
|
17
web_demo.py
17
web_demo.py
|
@ -2,7 +2,14 @@ from transformers import AutoModel, AutoTokenizer
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
#GPU 部署
|
||||||
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||||
|
# 按需修改,目前只支持 4/8 bit 量化
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
|
||||||
|
#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||||
|
#如果你的内存不足,可以直接加载量化后的模型:
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
|
|
||||||
MAX_TURNS = 20
|
MAX_TURNS = 20
|
||||||
|
@ -34,12 +41,12 @@ with gr.Blocks() as demo:
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=4):
|
with gr.Column(scale=4):
|
||||||
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style(
|
txt = gr.Textbox(show_label=False, placeholder="输入文本并按Enter键", lines=11).style(
|
||||||
container=False)
|
container=False)
|
||||||
with gr.Column(scale=1):
|
with gr.Column(scale=1):
|
||||||
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="最大长度", interactive=True)
|
||||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="氛围", interactive=True)
|
||||||
button = gr.Button("Generate")
|
button = gr.Button("生成")
|
||||||
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
||||||
demo.queue().launch(share=False, inbrowser=True)
|
demo.queue().launch(share=False, inbrowser=True)
|
||||||
|
|
|
@ -0,0 +1,52 @@
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
|
#GPU 部署
|
||||||
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||||
|
# 按需修改,目前只支持 4/8 bit 量化
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
|
||||||
|
#如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||||
|
#如果你的内存不足,可以直接加载量化后的模型:
|
||||||
|
#model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
MAX_TURNS = 20
|
||||||
|
MAX_BOXES = MAX_TURNS * 2
|
||||||
|
|
||||||
|
|
||||||
|
def predict(input, max_length, top_p, temperature, history=None):
|
||||||
|
if history is None:
|
||||||
|
history = []
|
||||||
|
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
||||||
|
temperature=temperature):
|
||||||
|
updates = []
|
||||||
|
for query, response in history:
|
||||||
|
updates.append(gr.update(visible=True, value="用户:" + query))
|
||||||
|
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response))
|
||||||
|
if len(updates) < MAX_BOXES:
|
||||||
|
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
|
||||||
|
yield [history] + updates
|
||||||
|
|
||||||
|
|
||||||
|
with gr.Blocks() as demo:
|
||||||
|
state = gr.State([])
|
||||||
|
text_boxes = []
|
||||||
|
for i in range(MAX_BOXES):
|
||||||
|
if i % 2 == 0:
|
||||||
|
text_boxes.append(gr.Markdown(visible=False, label="提问:"))
|
||||||
|
else:
|
||||||
|
text_boxes.append(gr.Markdown(visible=False, label="回复:"))
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column(scale=4):
|
||||||
|
txt = gr.Textbox(show_label=False, placeholder="输入文本并按Enter键", lines=11).style(
|
||||||
|
container=False)
|
||||||
|
with gr.Column(scale=1):
|
||||||
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="最大长度", interactive=True)
|
||||||
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||||
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="氛围", interactive=True)
|
||||||
|
button = gr.Button("生成")
|
||||||
|
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
||||||
|
demo.queue().launch(share=False, inbrowser=True)
|
Loading…
Reference in New Issue