mirror of https://github.com/THUDM/ChatGLM-6B
Merge 430224bf13
into 401bf3a8a7
commit
ae03f3609a
|
@ -0,0 +1,65 @@
|
|||
import os
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import signal
|
||||
import platform
|
||||
from stream_utils import ChatGLMStreamDecoder
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"THUDM/chatglm-6b", trust_remote_code=True)
|
||||
stream_decoder = ChatGLMStreamDecoder(tokenizer.sp_tokenizer.text_tokenizer.sp)
|
||||
model = AutoModel.from_pretrained(
|
||||
"THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
model = model.eval()
|
||||
|
||||
os_name = platform.system()
|
||||
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
||||
stop_stream = False
|
||||
|
||||
|
||||
def signal_handler(signal, frame):
|
||||
global stop_stream
|
||||
stop_stream = True
|
||||
|
||||
|
||||
def main():
|
||||
history = []
|
||||
global stop_stream
|
||||
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||
while True:
|
||||
query = input("\n用户:")
|
||||
if query.strip() == "stop":
|
||||
break
|
||||
if query.strip() == "clear":
|
||||
history = []
|
||||
stream_decoder.end()
|
||||
stream_decoder.get()
|
||||
os.system(clear_command)
|
||||
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||
continue
|
||||
gen_kwargs = {"max_length": 2048, "do_sample": True, "top_p": 0.7,
|
||||
"temperature": 0.95, "logits_processor": None}
|
||||
if not history:
|
||||
prompt = query
|
||||
else:
|
||||
prompt = "".join([f"[Round {i}]\n问:{q}\n答:{r}\n" for i, (q, r) in enumerate(
|
||||
history)] + [f"[Round {len(history)}]\n问:{query}\n答:"])
|
||||
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
||||
print("\nChatGLM-6B:", end="")
|
||||
response = []
|
||||
for outputs in model.stream_generate(**inputs, **gen_kwargs):
|
||||
stream_decoder.put([int(outputs[0][-1])])
|
||||
new_resp = stream_decoder.get().replace("<n>", "\n")
|
||||
response.append(new_resp)
|
||||
print(new_resp, end="")
|
||||
# end of line
|
||||
stream_decoder.end()
|
||||
new_resp = stream_decoder.get().replace("<n>", "\n")
|
||||
response.append(new_resp)
|
||||
print(new_resp)
|
||||
response = "".join(response)
|
||||
history.append((query, response))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,205 @@
|
|||
import sentencepiece as spm
|
||||
from typing import Tuple
|
||||
import re
|
||||
import unittest
|
||||
|
||||
# python implantation of https://github.com/google/sentencepiece/blob/master/src/sentencepiece_processor.cc
|
||||
|
||||
|
||||
def DecodeSentencePiece(piece: str, id: int, is_bos_ws: bool, sp: spm.SentencePieceProcessor, add_dummy_prefix=True, remove_extra_whitespaces=False) -> Tuple[str, bool]:
|
||||
'''
|
||||
Returns decoded piece and a boolean indicating if the function has consumed
|
||||
a bos whitespace token (a piece starting with a kSpaceSymbol). This is used
|
||||
to strip only the first whitespace token from the decoded sequence for
|
||||
add_dummy_prefix.
|
||||
'''
|
||||
if sp.IsControl(id): # <s>, </s>
|
||||
return "", False # invisible symbol.
|
||||
elif sp.IsUnknown(id):
|
||||
if sp.IdToPiece(id) == piece: # <unk>
|
||||
return SPStreamDecoder.DefaultUnknownSymbol, False
|
||||
else: # return piece when piece is not <unk>.
|
||||
return piece, False
|
||||
has_bos_ws = False # whether the token starts with a kSpaceSymbol
|
||||
# Consume if the current position is bos and
|
||||
# piece starts with kSpaceSymbol.
|
||||
if is_bos_ws and (add_dummy_prefix or remove_extra_whitespaces):
|
||||
t = piece.removeprefix(SPStreamDecoder.SpaceSymbol)
|
||||
has_bos_ws = t != piece
|
||||
piece = t
|
||||
# if we are removing extra whitespace, we remove all leading whitespace
|
||||
if remove_extra_whitespaces:
|
||||
has_bos_ws = False
|
||||
return piece.replace(SPStreamDecoder.SpaceSymbol, " "), has_bos_ws
|
||||
|
||||
|
||||
def ProcessBytePieces(pieces: list[str]) -> str:
|
||||
'''
|
||||
Modified version of original code
|
||||
'''
|
||||
if len(pieces) == 0:
|
||||
return ""
|
||||
surfaces = ""
|
||||
# Constructs byte sequence.
|
||||
bytes_ = bytes([int(piece[1:-1], base=16) for piece in pieces])
|
||||
# Set surfaces of `bytes` for each Unicode character.
|
||||
while len(bytes_) > 0:
|
||||
try:
|
||||
surfaces += bytes_.decode('utf-8')
|
||||
break
|
||||
except UnicodeDecodeError as e:
|
||||
# The byte piece at `e.start` is structurally invalid. Map it to
|
||||
# REPLACEMENT CHARACTER (U+FFFD).
|
||||
surfaces += bytes_[:e.start].decode('utf-8')
|
||||
surfaces += SPStreamDecoder.ReplacementCharacter
|
||||
bytes_ = bytes_[e.end:]
|
||||
continue
|
||||
return surfaces
|
||||
|
||||
|
||||
class SPStreamDecoder:
|
||||
SpaceSymbol = chr(0x2581)
|
||||
DefaultUnknownSymbol = chr(0x2047)
|
||||
ReplacementCharacter = chr(0xFFFD)
|
||||
|
||||
def __init__(self, sp: spm.SentencePieceProcessor, remove_extra_whitespaces=False, add_dummy_prefix=True) -> None:
|
||||
self._sp = sp
|
||||
self._bos_ws_seen = False
|
||||
# 'is_bos_ws': whether we expect a bos ws token to consume.
|
||||
self._is_bos_ws = True
|
||||
self._nothing_decoded = True
|
||||
self._ids = []
|
||||
self._decoded = ""
|
||||
self._ending = False
|
||||
self.remove_extra_whitespaces = remove_extra_whitespaces
|
||||
self.add_dummy_prefix = add_dummy_prefix
|
||||
|
||||
def put(self, ids: list[int]) -> None:
|
||||
self._ending = False
|
||||
self._ids += ids
|
||||
self._decode(eos=False)
|
||||
|
||||
def end(self) -> None:
|
||||
self._decode(eos=True)
|
||||
self._is_bos_ws = True
|
||||
self._bos_ws_seen = False
|
||||
self._nothing_decoded = True
|
||||
self._ending = True
|
||||
self._ids = []
|
||||
|
||||
def _decode(self, eos=False) -> None:
|
||||
pieces = [self._sp.IdToPiece(i) for i in self._ids]
|
||||
consumed = 0
|
||||
byte_pieces = []
|
||||
for i, piece in enumerate(pieces):
|
||||
if not self._sp.IsByte(self._ids[i]):
|
||||
self._decoded += ProcessBytePieces(byte_pieces)
|
||||
consumed += len(byte_pieces)
|
||||
if len(self._decoded) > 0:
|
||||
self._nothing_decoded = False
|
||||
byte_pieces = []
|
||||
# if we have seen a bos_ws token or any non-empty token
|
||||
if self._bos_ws_seen or (not self._nothing_decoded):
|
||||
self._is_bos_ws = False
|
||||
decoded, self._bos_ws_seen = DecodeSentencePiece(
|
||||
piece, self._ids[i], self._is_bos_ws, self._sp)
|
||||
self._decoded += decoded
|
||||
consumed += 1
|
||||
if len(self._decoded) > 0:
|
||||
self._nothing_decoded = False
|
||||
else:
|
||||
byte_pieces.append(piece)
|
||||
if eos:
|
||||
self._decoded += ProcessBytePieces(byte_pieces)
|
||||
else:
|
||||
self._ids = self._ids[consumed:]
|
||||
|
||||
def get(self) -> str:
|
||||
t = self._decoded
|
||||
self._decoded = ""
|
||||
return t
|
||||
|
||||
|
||||
class ChatGLMStreamDecoder(SPStreamDecoder):
|
||||
|
||||
def get(self) -> str:
|
||||
# if prefix of special tokens found, wait till it's impossible or end of decode
|
||||
if "[" in self._decoded and len(self._decoded)-self._decoded.index("[") < 8 and not self._ending:
|
||||
return ""
|
||||
if "<" in self._decoded and len(self._decoded)-self._decoded.index("<") < 12 and not self._ending:
|
||||
return ""
|
||||
self._ending = False
|
||||
t = self._decoded
|
||||
self._decoded = ""
|
||||
t = t.replace("<n>", "\n")
|
||||
t = t.replace("[[训练时间]]", "2023年")
|
||||
punkts = [
|
||||
[",", ","],
|
||||
["!", "!"],
|
||||
[":", ":"],
|
||||
[";", ";"],
|
||||
["\?", "?"],
|
||||
]
|
||||
for item in punkts:
|
||||
t = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], t)
|
||||
t = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], t)
|
||||
# for i in range(max_len, 1, -1):
|
||||
# t = t.replace(f"<|blank_{i}|>", " " * i)
|
||||
for blank_token in re.findall(r"<\|blank_\d+\|>", t):
|
||||
t = t.replace(blank_token, " " *
|
||||
int(re.search(r"\d+", blank_token)[0]))
|
||||
return t
|
||||
|
||||
|
||||
class ChatGLMStreamDecoderTest(unittest.TestCase):
|
||||
def test_ChatGLM_StreamDecoder(self):
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
test_strings = [
|
||||
"你好👋", # multi-byte encoding
|
||||
"Hello this is ChatGLM!", # normal text
|
||||
"你好👋 This is ChatGLM!", # multi-byte encoding with tail
|
||||
"!?.,!?。,", # punctuations
|
||||
"A\nB", # "<n>" -> "\n"
|
||||
"[[训练时间]]", # training time token
|
||||
"[[训练时间]123", # broken training time token
|
||||
"1 1", # blank token. Note: It's hard to match the results of strip(), so add leading and tailing "1"
|
||||
"<|blank_8|123", # broken blank token
|
||||
]
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(
|
||||
"THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
model = model.eval()
|
||||
encoded_ids = [tokenizer(x)['input_ids'] for x in test_strings]
|
||||
stream_decoder = ChatGLMStreamDecoder(
|
||||
tokenizer.sp_tokenizer.text_tokenizer.sp)
|
||||
# original output
|
||||
expected_outputs = [model.process_response(
|
||||
tokenizer.decode(x)) for x in encoded_ids]
|
||||
# decode token by token
|
||||
decoded_strings_stream_token_by_token = [None for _ in test_strings]
|
||||
for i in range(len(test_strings)):
|
||||
res = []
|
||||
for t in encoded_ids[i]:
|
||||
stream_decoder.put([t])
|
||||
res.append(stream_decoder.get())
|
||||
stream_decoder.end()
|
||||
res.append(stream_decoder.get())
|
||||
res = "".join(res)
|
||||
decoded_strings_stream_token_by_token[i] = res
|
||||
# decode all at once
|
||||
decoded_strings_stream = [None for _ in test_strings]
|
||||
for i in range(len(test_strings)):
|
||||
stream_decoder.put(encoded_ids[i])
|
||||
stream_decoder.end()
|
||||
decoded_strings_stream[i] = stream_decoder.get()
|
||||
for i in range(len(test_strings)):
|
||||
print(
|
||||
f"Stream decoder test{i}: expected: '{expected_outputs[i]}', token_by_token: '{decoded_strings_stream_token_by_token[i]}', all at once: '{decoded_strings_stream[i]}'")
|
||||
self.assertEqual(
|
||||
expected_outputs[i], decoded_strings_stream_token_by_token[i])
|
||||
self.assertEqual(expected_outputs[i], decoded_strings_stream[i])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue