mirror of https://github.com/THUDM/ChatGLM-6B
206 lines
8.1 KiB
Python
206 lines
8.1 KiB
Python
import sentencepiece as spm
|
||
from typing import Tuple
|
||
import re
|
||
import unittest
|
||
|
||
# python implantation of https://github.com/google/sentencepiece/blob/master/src/sentencepiece_processor.cc
|
||
|
||
|
||
def DecodeSentencePiece(piece: str, id: int, is_bos_ws: bool, sp: spm.SentencePieceProcessor, add_dummy_prefix=True, remove_extra_whitespaces=False) -> Tuple[str, bool]:
|
||
'''
|
||
Returns decoded piece and a boolean indicating if the function has consumed
|
||
a bos whitespace token (a piece starting with a kSpaceSymbol). This is used
|
||
to strip only the first whitespace token from the decoded sequence for
|
||
add_dummy_prefix.
|
||
'''
|
||
if sp.IsControl(id): # <s>, </s>
|
||
return "", False # invisible symbol.
|
||
elif sp.IsUnknown(id):
|
||
if sp.IdToPiece(id) == piece: # <unk>
|
||
return SPStreamDecoder.DefaultUnknownSymbol, False
|
||
else: # return piece when piece is not <unk>.
|
||
return piece, False
|
||
has_bos_ws = False # whether the token starts with a kSpaceSymbol
|
||
# Consume if the current position is bos and
|
||
# piece starts with kSpaceSymbol.
|
||
if is_bos_ws and (add_dummy_prefix or remove_extra_whitespaces):
|
||
t = piece.removeprefix(SPStreamDecoder.SpaceSymbol)
|
||
has_bos_ws = t != piece
|
||
piece = t
|
||
# if we are removing extra whitespace, we remove all leading whitespace
|
||
if remove_extra_whitespaces:
|
||
has_bos_ws = False
|
||
return piece.replace(SPStreamDecoder.SpaceSymbol, " "), has_bos_ws
|
||
|
||
|
||
def ProcessBytePieces(pieces: list[str]) -> str:
|
||
'''
|
||
Modified version of original code
|
||
'''
|
||
if len(pieces) == 0:
|
||
return ""
|
||
surfaces = ""
|
||
# Constructs byte sequence.
|
||
bytes_ = bytes([int(piece[1:-1], base=16) for piece in pieces])
|
||
# Set surfaces of `bytes` for each Unicode character.
|
||
while len(bytes_) > 0:
|
||
try:
|
||
surfaces += bytes_.decode('utf-8')
|
||
break
|
||
except UnicodeDecodeError as e:
|
||
# The byte piece at `e.start` is structurally invalid. Map it to
|
||
# REPLACEMENT CHARACTER (U+FFFD).
|
||
surfaces += bytes_[:e.start].decode('utf-8')
|
||
surfaces += SPStreamDecoder.ReplacementCharacter
|
||
bytes_ = bytes_[e.end:]
|
||
continue
|
||
return surfaces
|
||
|
||
|
||
class SPStreamDecoder:
|
||
SpaceSymbol = chr(0x2581)
|
||
DefaultUnknownSymbol = chr(0x2047)
|
||
ReplacementCharacter = chr(0xFFFD)
|
||
|
||
def __init__(self, sp: spm.SentencePieceProcessor, remove_extra_whitespaces=False, add_dummy_prefix=True) -> None:
|
||
self._sp = sp
|
||
self._bos_ws_seen = False
|
||
# 'is_bos_ws': whether we expect a bos ws token to consume.
|
||
self._is_bos_ws = True
|
||
self._nothing_decoded = True
|
||
self._ids = []
|
||
self._decoded = ""
|
||
self._ending = False
|
||
self.remove_extra_whitespaces = remove_extra_whitespaces
|
||
self.add_dummy_prefix = add_dummy_prefix
|
||
|
||
def put(self, ids: list[int]) -> None:
|
||
self._ending = False
|
||
self._ids += ids
|
||
self._decode(eos=False)
|
||
|
||
def end(self) -> None:
|
||
self._decode(eos=True)
|
||
self._is_bos_ws = True
|
||
self._bos_ws_seen = False
|
||
self._nothing_decoded = True
|
||
self._ending = True
|
||
self._ids = []
|
||
|
||
def _decode(self, eos=False) -> None:
|
||
pieces = [self._sp.IdToPiece(i) for i in self._ids]
|
||
consumed = 0
|
||
byte_pieces = []
|
||
for i, piece in enumerate(pieces):
|
||
if not self._sp.IsByte(self._ids[i]):
|
||
self._decoded += ProcessBytePieces(byte_pieces)
|
||
consumed += len(byte_pieces)
|
||
if len(self._decoded) > 0:
|
||
self._nothing_decoded = False
|
||
byte_pieces = []
|
||
# if we have seen a bos_ws token or any non-empty token
|
||
if self._bos_ws_seen or (not self._nothing_decoded):
|
||
self._is_bos_ws = False
|
||
decoded, self._bos_ws_seen = DecodeSentencePiece(
|
||
piece, self._ids[i], self._is_bos_ws, self._sp)
|
||
self._decoded += decoded
|
||
consumed += 1
|
||
if len(self._decoded) > 0:
|
||
self._nothing_decoded = False
|
||
else:
|
||
byte_pieces.append(piece)
|
||
if eos:
|
||
self._decoded += ProcessBytePieces(byte_pieces)
|
||
else:
|
||
self._ids = self._ids[consumed:]
|
||
|
||
def get(self) -> str:
|
||
t = self._decoded
|
||
self._decoded = ""
|
||
return t
|
||
|
||
|
||
class ChatGLMStreamDecoder(SPStreamDecoder):
|
||
|
||
def get(self) -> str:
|
||
# if prefix of special tokens found, wait till it's impossible or end of decode
|
||
if "[" in self._decoded and len(self._decoded)-self._decoded.index("[") < 8 and not self._ending:
|
||
return ""
|
||
if "<" in self._decoded and len(self._decoded)-self._decoded.index("<") < 12 and not self._ending:
|
||
return ""
|
||
self._ending = False
|
||
t = self._decoded
|
||
self._decoded = ""
|
||
t = t.replace("<n>", "\n")
|
||
t = t.replace("[[训练时间]]", "2023年")
|
||
punkts = [
|
||
[",", ","],
|
||
["!", "!"],
|
||
[":", ":"],
|
||
[";", ";"],
|
||
["\?", "?"],
|
||
]
|
||
for item in punkts:
|
||
t = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], t)
|
||
t = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], t)
|
||
# for i in range(max_len, 1, -1):
|
||
# t = t.replace(f"<|blank_{i}|>", " " * i)
|
||
for blank_token in re.findall(r"<\|blank_\d+\|>", t):
|
||
t = t.replace(blank_token, " " *
|
||
int(re.search(r"\d+", blank_token)[0]))
|
||
return t
|
||
|
||
|
||
class ChatGLMStreamDecoderTest(unittest.TestCase):
|
||
def test_ChatGLM_StreamDecoder(self):
|
||
from transformers import AutoTokenizer, AutoModel
|
||
test_strings = [
|
||
"你好👋", # multi-byte encoding
|
||
"Hello this is ChatGLM!", # normal text
|
||
"你好👋 This is ChatGLM!", # multi-byte encoding with tail
|
||
"!?.,!?。,", # punctuations
|
||
"A\nB", # "<n>" -> "\n"
|
||
"[[训练时间]]", # training time token
|
||
"[[训练时间]123", # broken training time token
|
||
"1 1", # blank token. Note: It's hard to match the results of strip(), so add leading and tailing "1"
|
||
"<|blank_8|123", # broken blank token
|
||
]
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
"THUDM/chatglm-6b", trust_remote_code=True)
|
||
model = AutoModel.from_pretrained(
|
||
"THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||
model = model.eval()
|
||
encoded_ids = [tokenizer(x)['input_ids'] for x in test_strings]
|
||
stream_decoder = ChatGLMStreamDecoder(
|
||
tokenizer.sp_tokenizer.text_tokenizer.sp)
|
||
# original output
|
||
expected_outputs = [model.process_response(
|
||
tokenizer.decode(x)) for x in encoded_ids]
|
||
# decode token by token
|
||
decoded_strings_stream_token_by_token = [None for _ in test_strings]
|
||
for i in range(len(test_strings)):
|
||
res = []
|
||
for t in encoded_ids[i]:
|
||
stream_decoder.put([t])
|
||
res.append(stream_decoder.get())
|
||
stream_decoder.end()
|
||
res.append(stream_decoder.get())
|
||
res = "".join(res)
|
||
decoded_strings_stream_token_by_token[i] = res
|
||
# decode all at once
|
||
decoded_strings_stream = [None for _ in test_strings]
|
||
for i in range(len(test_strings)):
|
||
stream_decoder.put(encoded_ids[i])
|
||
stream_decoder.end()
|
||
decoded_strings_stream[i] = stream_decoder.get()
|
||
for i in range(len(test_strings)):
|
||
print(
|
||
f"Stream decoder test{i}: expected: '{expected_outputs[i]}', token_by_token: '{decoded_strings_stream_token_by_token[i]}', all at once: '{decoded_strings_stream[i]}'")
|
||
self.assertEqual(
|
||
expected_outputs[i], decoded_strings_stream_token_by_token[i])
|
||
self.assertEqual(expected_outputs[i], decoded_strings_stream[i])
|
||
|
||
|
||
if __name__ == "__main__":
|
||
unittest.main()
|