mirror of https://github.com/THUDM/ChatGLM-6B
Add option for saving checkpoint
parent
a1d9dcc517
commit
5fb705cd5b
|
@ -354,6 +354,7 @@ def main():
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
||||||
|
save_prefixencoder=model_args.pre_seq_len is not None
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
|
|
|
@ -317,7 +317,9 @@ class Trainer:
|
||||||
callbacks: Optional[List[TrainerCallback]] = None,
|
callbacks: Optional[List[TrainerCallback]] = None,
|
||||||
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
|
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
|
||||||
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
||||||
|
save_prefixencoder: bool = False,
|
||||||
):
|
):
|
||||||
|
self.save_prefixencoder = save_prefixencoder
|
||||||
if args is None:
|
if args is None:
|
||||||
output_dir = "tmp_trainer"
|
output_dir = "tmp_trainer"
|
||||||
logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
|
logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
|
||||||
|
@ -2825,12 +2827,17 @@ class Trainer:
|
||||||
state_dict = self.model.state_dict()
|
state_dict = self.model.state_dict()
|
||||||
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
|
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
|
||||||
else:
|
else:
|
||||||
state_dict = self.model.state_dict()
|
if self.save_prefixencoder:
|
||||||
filtered_state_dict = {}
|
print("Saving PrefixEncoder")
|
||||||
for k, v in self.model.named_parameters():
|
state_dict = self.model.state_dict()
|
||||||
if v.requires_grad:
|
filtered_state_dict = {}
|
||||||
filtered_state_dict[k] = state_dict[k]
|
for k, v in self.model.named_parameters():
|
||||||
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
if v.requires_grad:
|
||||||
|
filtered_state_dict[k] = state_dict[k]
|
||||||
|
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
||||||
|
else:
|
||||||
|
print("Saving the whole model")
|
||||||
|
self.model.save_pretrained(output_dir, state_dict=state_dict)
|
||||||
if self.tokenizer is not None:
|
if self.tokenizer is not None:
|
||||||
self.tokenizer.save_pretrained(output_dir)
|
self.tokenizer.save_pretrained(output_dir)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue