☀ feat: 修改支持多卡部署

pull/1066/head
DealiAxy 2023-05-19 17:34:58 +08:00
parent 770676fdd5
commit 5b55467895
2 changed files with 76 additions and 11 deletions

59
cli_demo_gpus.py Normal file
View File

@ -0,0 +1,59 @@
import os
import platform
import signal
from transformers import AutoTokenizer, AutoModel
from utils import load_model_on_gpus
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = False
def build_prompt(history):
prompt = "欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序"
for query, response in history:
prompt += f"\n\n用户:{query}"
prompt += f"\n\nChatGLM-6B{response}"
return prompt
def signal_handler(signal, frame):
global stop_stream
stop_stream = True
def main():
history = []
global stop_stream
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
while True:
query = input("\n用户:")
if query.strip() == "stop":
break
if query.strip() == "clear":
history = []
os.system(clear_command)
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
continue
count = 0
for response, history in model.stream_chat(tokenizer, query, history=history):
if stop_stream:
stop_stream = False
break
else:
count += 1
if count % 8 == 0:
os.system(clear_command)
print(build_prompt(history), flush=True)
signal.signal(signal.SIGINT, signal_handler)
os.system(clear_command)
print(build_prompt(history), flush=True)
if __name__ == "__main__":
main()

View File

@ -1,9 +1,12 @@
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
from transformers import AutoModel, AutoTokenizer
from utils import load_model_on_gpus
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
model = model.eval()
"""Override Chatbot.postprocess"""
@ -60,7 +63,7 @@ def predict(input, chatbot, max_length, top_p, temperature, history):
chatbot.append((parse_text(input), ""))
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
@ -74,21 +77,24 @@ def reset_state():
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">ChatGLM</h1>""")
gr.HTML("""<h1 align="center">CodeLab</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
user_input = gr.Textbox(show_label=False, placeholder="输入聊天内容", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
submitBtn = gr.Button("发送", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
emptyBtn = gr.Button("清除历史记录")
max_length = gr.Slider(
0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
@ -98,4 +104,4 @@ with gr.Blocks() as demo:
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)
demo.queue().launch(share=False, inbrowser=False, server_port=11001)