mirror of https://github.com/THUDM/ChatGLM-6B
☀ feat: 重写接口
parent
bc6695b7f2
commit
770676fdd5
78
api.py
78
api.py
|
@ -1,40 +1,49 @@
|
|||
import json
|
||||
import datetime
|
||||
import torch
|
||||
import uvicorn
|
||||
from typing import List
|
||||
from fastapi import FastAPI, Request
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import uvicorn, json, datetime
|
||||
import torch
|
||||
|
||||
DEVICE = "cuda"
|
||||
DEVICE_ID = "0"
|
||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||
from pydantic import BaseModel
|
||||
from utils import load_model_on_gpus
|
||||
|
||||
|
||||
def torch_gc():
|
||||
devices_list = [
|
||||
'cuda:0',
|
||||
'cuda:1'
|
||||
]
|
||||
|
||||
|
||||
def _torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
with torch.cuda.device(CUDA_DEVICE):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
for item in devices_list:
|
||||
with torch.cuda.device(item):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
class Question(BaseModel):
|
||||
prompt: str
|
||||
history: List[str] = []
|
||||
max_length: int = 2048
|
||||
top_p: float = 0.7
|
||||
temperature: float = 0.95
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
max_length = json_post_list.get('max_length')
|
||||
top_p = json_post_list.get('top_p')
|
||||
temperature = json_post_list.get('temperature')
|
||||
response, history = model.chat(tokenizer,
|
||||
prompt,
|
||||
history=history,
|
||||
max_length=max_length if max_length else 2048,
|
||||
top_p=top_p if top_p else 0.7,
|
||||
temperature=temperature if temperature else 0.95)
|
||||
@app.post('/chat/')
|
||||
async def chat(question: Question):
|
||||
response, history = model.chat(
|
||||
tokenizer,
|
||||
question.prompt,
|
||||
history=question.history,
|
||||
max_length=question.max_length,
|
||||
top_p=question.top_p,
|
||||
temperature=question.temperature
|
||||
)
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
|
@ -43,14 +52,15 @@ async def create_item(request: Request):
|
|||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
torch_gc()
|
||||
_torch_gc()
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
if __name__ == "__main__":
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"THUDM/chatglm-6b", trust_remote_code=True
|
||||
)
|
||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
model.eval()
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
||||
uvicorn.run(app, host="127.0.0.1", port=11001, workers=1)
|
||||
|
|
Loading…
Reference in New Issue