☀ feat: 重写接口

pull/1066/head
DealiAxy 2023-05-19 17:33:40 +08:00
parent bc6695b7f2
commit 770676fdd5
1 changed files with 44 additions and 34 deletions

78
api.py
View File

@ -1,40 +1,49 @@
import json
import datetime
import torch
import uvicorn
from typing import List
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
import uvicorn, json, datetime
import torch
DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
from pydantic import BaseModel
from utils import load_model_on_gpus
def torch_gc():
devices_list = [
'cuda:0',
'cuda:1'
]
def _torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
for item in devices_list:
with torch.cuda.device(item):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
class Question(BaseModel):
prompt: str
history: List[str] = []
max_length: int = 2048
top_p: float = 0.7
temperature: float = 0.95
app = FastAPI()
@app.post("/")
async def create_item(request: Request):
global model, tokenizer
json_post_raw = await request.json()
json_post = json.dumps(json_post_raw)
json_post_list = json.loads(json_post)
prompt = json_post_list.get('prompt')
history = json_post_list.get('history')
max_length = json_post_list.get('max_length')
top_p = json_post_list.get('top_p')
temperature = json_post_list.get('temperature')
response, history = model.chat(tokenizer,
prompt,
history=history,
max_length=max_length if max_length else 2048,
top_p=top_p if top_p else 0.7,
temperature=temperature if temperature else 0.95)
@app.post('/chat/')
async def chat(question: Question):
response, history = model.chat(
tokenizer,
question.prompt,
history=question.history,
max_length=question.max_length,
top_p=question.top_p,
temperature=question.temperature
)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
@ -43,14 +52,15 @@ async def create_item(request: Request):
"status": 200,
"time": time
}
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
print(log)
torch_gc()
_torch_gc()
return answer
if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(
"THUDM/chatglm-6b", trust_remote_code=True
)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model.eval()
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
uvicorn.run(app, host="127.0.0.1", port=11001, workers=1)