mirror of https://github.com/THUDM/ChatGLM-6B
commit
16b3a43717
60
README.md
60
README.md
|
@ -191,14 +191,70 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True
|
||||||
|
|
||||||
如果遇到了报错 `Could not find module 'nvcuda.dll'` 或者 `RuntimeError: Unknown platform: darwin` (MacOS) ,请[从本地加载模型](README.md#从本地加载模型)
|
如果遇到了报错 `Could not find module 'nvcuda.dll'` 或者 `RuntimeError: Unknown platform: darwin` (MacOS) ,请[从本地加载模型](README.md#从本地加载模型)
|
||||||
|
|
||||||
|
### Mac 上的 CPU 部署和加速
|
||||||
|
|
||||||
|
Mac直接加载量化后的模型会出现问题(可运行但是单核),这是由于Mac由于本身缺乏omp导致的。
|
||||||
|
|
||||||
|
```sh
|
||||||
|
clang: error: unsupported option '-fopenmp'
|
||||||
|
clang: error: unsupported option '-fopenmp'
|
||||||
|
```
|
||||||
|
|
||||||
|
以[chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4)量化模型为例,需要做如下配置:
|
||||||
|
|
||||||
|
1. 安装`libomp`;
|
||||||
|
2. 配置`gcc`编译项。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 第一步: 参考`https://mac.r-project.org/openmp/`
|
||||||
|
## 假设gcc -v是14.x版本,其他版本见R-Project提供的表格
|
||||||
|
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
|
||||||
|
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
|
||||||
|
## 此时会安装下面几个文件:
|
||||||
|
# usr/local/lib/libomp.dylib
|
||||||
|
# usr/local/include/ompt.h
|
||||||
|
# usr/local/include/omp.h
|
||||||
|
# usr/local/include/omp-tools.h
|
||||||
|
```
|
||||||
|
|
||||||
|
针对`chatglm-6b-int4`, 修改[quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py),主要是把硬编码的`gcc -O3 -fPIC -pthread -fopenmp -std=c99`命令修改成`gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99`,[对应代码](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168)见下:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# 第二步
|
||||||
|
## 找到包含`gcc -O3 -fPIC -pthread -fopenmp -std=c99`的这一行
|
||||||
|
## 修改成
|
||||||
|
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
||||||
|
```
|
||||||
|
|
||||||
|
为了兼容性,也能写成
|
||||||
|
```python
|
||||||
|
## 在最开始增加一个包
|
||||||
|
import platform
|
||||||
|
## ...
|
||||||
|
## 上述相应部分修改为(请自行改一下缩进):
|
||||||
|
if platform.uname()[0] == 'Darwin':
|
||||||
|
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99-o {}".format(
|
||||||
|
source_code, kernel_file)
|
||||||
|
else:
|
||||||
|
compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(
|
||||||
|
source_code, kernel_file)
|
||||||
|
```
|
||||||
|
|
||||||
|
> 注意:如果你之前运行过失败过,最好清一下Huggingface的缓存,i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
|
||||||
|
|
||||||
### Mac 上的 GPU 加速
|
### Mac 上的 GPU 加速
|
||||||
对于搭载了Apple Silicon的Mac(以及MacBook),可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly。
|
对于搭载了Apple Silicon的Mac(以及MacBook),可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly。
|
||||||
|
|
||||||
目前在 MacOS 上只支持[从本地加载模型](README.md#从本地加载模型)。将代码中的模型加载改为从本地加载,并使用 mps 后端
|
目前在 MacOS 上只支持[从本地加载模型](README.md#从本地加载模型)。将代码中的模型加载改为从本地加载,并使用 mps 后端:
|
||||||
```python
|
```python
|
||||||
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
|
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
|
||||||
```
|
```
|
||||||
即可使用在 Mac 上使用 GPU 加速模型推理。
|
即可使用在 Mac 上使用 GPU 加速模型推理。如果出现关于`half`的报错(比如在MacOS 13.3.x上),可以改成:
|
||||||
|
```python
|
||||||
|
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
|
||||||
|
```
|
||||||
|
|
||||||
|
> 注意:上述方法在非量化版中,运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE,这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
|
||||||
|
|
||||||
### 多卡部署
|
### 多卡部署
|
||||||
如果你有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。首先安装 accelerate: `pip install accelerate`,然后通过如下方法加载模型:
|
如果你有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。首先安装 accelerate: `pip install accelerate`,然后通过如下方法加载模型:
|
||||||
|
|
61
README_en.md
61
README_en.md
|
@ -188,6 +188,58 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=Tru
|
||||||
|
|
||||||
If your encounter the error `Could not find module 'nvcuda.dll'` or `RuntimeError: Unknown platform: darwin`(MacOS), please [load the model locally](README_en.md#load-the-model-locally).
|
If your encounter the error `Could not find module 'nvcuda.dll'` or `RuntimeError: Unknown platform: darwin`(MacOS), please [load the model locally](README_en.md#load-the-model-locally).
|
||||||
|
|
||||||
|
|
||||||
|
### CPU Deployment on Mac
|
||||||
|
|
||||||
|
The default Mac enviroment does not support Openmp. One may encounter such warning/errors when execute the `AutoModel.from_pretrained(...)` command:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
clang: error: unsupported option '-fopenmp'
|
||||||
|
clang: error: unsupported option '-fopenmp'
|
||||||
|
```
|
||||||
|
|
||||||
|
Take the quantified int4 version [chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4) for example, the following extra steps are needed:
|
||||||
|
|
||||||
|
1. Install `libomp`;
|
||||||
|
2. Configure `gcc`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# STEP 1: install libopenmp, check `https://mac.r-project.org/openmp/` for details
|
||||||
|
## Assumption: `gcc -v >= 14.x`, read the R-Poject before run the code:
|
||||||
|
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
|
||||||
|
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
|
||||||
|
## Four files are installed:
|
||||||
|
# usr/local/lib/libomp.dylib
|
||||||
|
# usr/local/include/ompt.h
|
||||||
|
# usr/local/include/omp.h
|
||||||
|
# usr/local/include/omp-tools.h
|
||||||
|
```
|
||||||
|
|
||||||
|
For `chatglm-6b-int4`, modify the [quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py)file. In the file, change the `gcc -O3 -fPIC -pthread -fopenmp -std=c99` configuration to `gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99`,[corresponding python code](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168), i.e.:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# STEP
|
||||||
|
## Change the line contains `gcc -O3 -fPIC -pthread -fopenmp -std=c99` to:
|
||||||
|
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
||||||
|
```
|
||||||
|
|
||||||
|
For production code, one could use `platform` library to make it neater:
|
||||||
|
|
||||||
|
```python
|
||||||
|
## import platform just after `import os`
|
||||||
|
import platform
|
||||||
|
## ...
|
||||||
|
## change the corresponding lines to:
|
||||||
|
if platform.uname()[0] == 'Darwin':
|
||||||
|
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99-o {}".format(
|
||||||
|
source_code, kernel_file)
|
||||||
|
else:
|
||||||
|
compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(
|
||||||
|
source_code, kernel_file)
|
||||||
|
```
|
||||||
|
|
||||||
|
> Notice: If you have run the `chatglm` project and failed, you may want to clean the cache of Huggingface before your next try, i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`. Since `rm` is used, please MAKE SURE that the command deletes the right files.
|
||||||
|
|
||||||
### GPU Inference on Mac
|
### GPU Inference on Mac
|
||||||
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly.
|
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly.
|
||||||
|
|
||||||
|
@ -195,8 +247,17 @@ Currently you must [load the model locally](README_en.md#load-the-model-locally)
|
||||||
```python
|
```python
|
||||||
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
|
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
|
||||||
```
|
```
|
||||||
|
|
||||||
|
For Mac users with Mac >= 13.3, one may encounter errors related to `half()` method. Use `float()` instead:
|
||||||
|
|
||||||
|
```python
|
||||||
|
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
|
||||||
|
```
|
||||||
|
|
||||||
Then you can use GPU-accelerated model inference on Mac.
|
Then you can use GPU-accelerated model inference on Mac.
|
||||||
|
|
||||||
|
> Notice: there is no promblem to run the non-quantified version of ChatGLM with MPS. One could check [this issue](https://github.com/THUDM/ChatGLM-6B/issues/462) to run the quantified version with MPS as the backend (and get `ERRORS`). Unzip/unpack [kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27) as an `ELF` file shows its backend is `cuda`.
|
||||||
|
|
||||||
### Multi-GPU Deployment
|
### Multi-GPU Deployment
|
||||||
If you have multiple GPUs, but the memory size of each GPU is not sufficient to accommodate the entire model, you can split the model across multiple GPUs.
|
If you have multiple GPUs, but the memory size of each GPU is not sufficient to accommodate the entire model, you can split the model across multiple GPUs.
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue