[Document] 更新Mac部署

[Document] 更新Mac部署
- FILE: README.md; README_en.md
- ADD: OPENMP; MPS

# 具体内容

以[chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4)量化模型为例,做如下配置:

- 安装libomp的步骤;
- 对量化后模型等配置gcc编译项;
- 量化后模型启用MPS的解释。
pull/899/head
Yifan 2023-05-03 14:17:37 +08:00
parent f1fa8db8f2
commit b13f1a63f3
2 changed files with 63 additions and 2 deletions

View File

@ -240,7 +240,7 @@ else:
source_code, kernel_file)
```
> !注意如果你之前运行过失败过最好清一下Huggingface对缓存i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
> 注意如果你之前运行过失败过最好清一下Huggingface的缓存i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
### Mac 上的 GPU 加速
对于搭载了Apple Silicon的Mac以及MacBook可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly。
@ -254,7 +254,7 @@ model = AutoModel.from_pretrained("your local path", trust_remote_code=True).hal
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
```
> 注意上述方法在非量化版中运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
> 注意上述方法在非量化版中运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
### 多卡部署
如果你有多张 GPU但是每张 GPU 的显存大小都不足以容纳完整的模型那么可以将模型切分在多张GPU上。首先安装 accelerate: `pip install accelerate`,然后通过如下方法加载模型:

View File

@ -188,6 +188,58 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=Tru
If your encounter the error `Could not find module 'nvcuda.dll'` or `RuntimeError: Unknown platform: darwin`(MacOS), please [load the model locally](README_en.md#load-the-model-locally).
### CPU Deployment on Mac
The default Mac enviroment does not support Openmp. One may encounter such warning/errors when execute the `AutoModel.from_pretrained(...)` command:
```sh
clang: error: unsupported option '-fopenmp'
clang: error: unsupported option '-fopenmp'
```
Take the quantified int4 version [chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4) for example, the following extra steps are needed:
1. Install `libomp`;
2. Configure `gcc`.
```bash
# STEP 1: install libopenmp, check `https://mac.r-project.org/openmp/` for details
## Assumption: `gcc -v >= 14.x`, read the R-Poject before run the code:
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
## Four files are installed:
# usr/local/lib/libomp.dylib
# usr/local/include/ompt.h
# usr/local/include/omp.h
# usr/local/include/omp-tools.h
```
For `chatglm-6b-int4`, modify the [quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py)file. In the file, change the `gcc -O3 -fPIC -pthread -fopenmp -std=c99` configuration to `gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99`[corresponding python code](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168), i.e.:
```python
# STEP
## Change the line contains `gcc -O3 -fPIC -pthread -fopenmp -std=c99` to:
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
```
For production code, one could use `platform` library to make it neater:
```python
## import platform just after `import os`
import platform
## ...
## change the corresponding lines to:
if platform.uname()[0] == 'Darwin':
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99-o {}".format(
source_code, kernel_file)
else:
compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(
source_code, kernel_file)
```
> Notice: If you have run the `chatglm` project and failed, you may want to clean the cache of Huggingface before your next try, i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`. Since `rm` is used, please MAKE SURE that the command deletes the right files.
### GPU Inference on Mac
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly.
@ -195,8 +247,17 @@ Currently you must [load the model locally](README_en.md#load-the-model-locally)
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
```
For Mac users with Mac >= 13.3, one may encounter errors related to `half()` method. Use `float()` instead:
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
```
Then you can use GPU-accelerated model inference on Mac.
> Notice: there is no promblem to run the non-quantified version of ChatGLM with MPS. One could check [this issue](https://github.com/THUDM/ChatGLM-6B/issues/462) to run the quantified version with MPS as the backend (and get `ERRORS`). Unzip/unpack [kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27) as an `ELF` file shows its backend is `cuda`.
### Multi-GPU Deployment
If you have multiple GPUs, but the memory size of each GPU is not sufficient to accommodate the entire model, you can split the model across multiple GPUs.