# **YOLOv5 + DeepSort 用于目标跟踪与计数** 🚗🚶‍♂️ **使用 YOLOv5 和 DeepSort 实现车辆与行人实时跟踪与计数** [![GitHub stars](https://img.shields.io/github/stars/Sharpiless/Yolov5-deepsort-inference?style=social)](https://github.com/Sharpiless/Yolov5-deepsort-inference) [![GitHub forks](https://img.shields.io/github/forks/Sharpiless/Yolov5-deepsort-inference?style=social)](https://github.com/Sharpiless/Yolov5-deepsort-inference) [![License](https://img.shields.io/github/license/Sharpiless/Yolov5-deepsort-inference)](https://github.com/Sharpiless/Yolov5-deepsort-inference/blob/main/LICENSE) --- ## **📌 项目简介** 本项目将 **YOLOv5** 与 **DeepSort** 相结合,实现了对目标的实时跟踪与计数。提供了一个封装的 `Detector` 类,方便将此功能嵌入到自定义项目中。 🔗 **阅读完整博客**:[【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数](https://blog.csdn.net/weixin_44936889/article/details/112002152) --- ## **🚀 核心功能** - **目标跟踪**:实时跟踪车辆与行人。 - **计数功能**:轻松统计视频流中的车辆或行人数。 - **封装式接口**:`Detector` 类封装了检测与跟踪逻辑,便于集成。 - **高度自定义**:支持训练自己的 YOLOv5 模型并无缝接入框架。 --- ## **🔧 使用说明** ### **安装依赖** ```bash pip install -r requirements.txt ``` 确保安装了 `requirements.txt` 文件中列出的所有依赖。 ### **运行 Demo** ```bash python demo.py ``` --- ## **🛠️ 开发说明** ### **YOLOv5 检测器** ```python class Detector(baseDet): def __init__(self): super(Detector, self).__init__() self.init_model() self.build_config() def init_model(self): self.weights = 'weights/yolov5m.pt' self.device = '0' if torch.cuda.is_available() else 'cpu' self.device = select_device(self.device) model = attempt_load(self.weights, map_location=self.device) model.to(self.device).eval() model.half() # torch.save(model, 'test.pt') self.m = model self.names = model.module.names if hasattr( model, 'module') else model.names def preprocess(self, img): img0 = img.copy() img = letterbox(img, new_shape=self.img_size)[0] img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() # 半精度 img /= 255.0 # 图像归一化 if img.ndimension() == 3: img = img.unsqueeze(0) return img0, img def detect(self, im): im0, img = self.preprocess(im) pred = self.m(img, augment=False)[0] pred = pred.float() pred = non_max_suppression(pred, self.threshold, 0.4) pred_boxes = [] for det in pred: if det is not None and len(det): det[:, :4] = scale_coords( img.shape[2:], det[:, :4], im0.shape).round() for *x, conf, cls_id in det: lbl = self.names[int(cls_id)] if not lbl in ['person', 'car', 'truck']: continue x1, y1 = int(x[0]), int(x[1]) x2, y2 = int(x[2]), int(x[3]) pred_boxes.append( (x1, y1, x2, y2, lbl, conf)) return im, pred_boxes ``` - 调用 `self.detect()` 方法返回图像和预测结果 ### **DeepSort 追踪器** ```python deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) ``` - 调用 `self.update()` 方法更新追踪结果 --- ## **📊 训练自己的模型** 如果需要训练自定义的 YOLOv5 模型,请参考以下教程: [【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862) 训练完成后,将模型权重文件放置于 `weights` 文件夹中。 --- ## **📦 API 调用** ### **初始化检测器** ```python from AIDetector_pytorch import Detector det = Detector() ``` ### **调用检测接口** ```python func_status = {} func_status['headpose'] = None result = det.feedCap(im, func_status) ``` - `im`: 输入的 BGR 图像。 - `result['frame']`: 检测结果的可视化图像。 --- ## **✨ 可视化效果** ![效果图](https://img-blog.csdnimg.cn/20201231090541223.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70) --- ## **📚 联系作者** - Bilibili: [https://space.bilibili.com/470550823](https://space.bilibili.com/470550823) - CSDN: [https://blog.csdn.net/weixin_44936889](https://blog.csdn.net/weixin_44936889) - AI Studio: [https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156) - GitHub: [https://github.com/Sharpiless](https://github.com/Sharpiless) --- ## **🎉 关注我** 关注我的微信公众号,获取更多深度学习教程: **公众号:可达鸭的深度学习教程** ![微信公众号二维码](https://img-blog.csdnimg.cn/20210127153004430.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70) --- ## **💡 许可证** 本项目遵循 **GNU General Public License v3.0** 协议。 **标明目标检测部分来源**:[https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)