import torch import numpy as np from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords, letterbox from utils.torch_utils import select_device from utils.BaseDetector import baseDet class Detector(baseDet): def __init__(self): super(Detector, self).__init__() self.init_model() self.build_config() def init_model(self): self.weights = 'weights/yolov5m.pt' self.device = '0' if torch.cuda.is_available() else 'cpu' self.device = select_device(self.device) model = attempt_load(self.weights, map_location=self.device) model.to(self.device).eval() model.half() # torch.save(model, 'test.pt') self.m = model self.names = model.module.names if hasattr( model, 'module') else model.names def preprocess(self, img): img0 = img.copy() img = letterbox(img, new_shape=self.img_size)[0] img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() # 半精度 img /= 255.0 # 图像归一化 if img.ndimension() == 3: img = img.unsqueeze(0) return img0, img def detect(self, im): im0, img = self.preprocess(im) pred = self.m(img, augment=False)[0] pred = pred.float() pred = non_max_suppression(pred, self.threshold, 0.4) pred_boxes = [] for det in pred: if det is not None and len(det): det[:, :4] = scale_coords( img.shape[2:], det[:, :4], im0.shape).round() for *x, conf, cls_id in det: lbl = self.names[int(cls_id)] if not lbl in ['person', 'car', 'truck']: continue x1, y1 = int(x[0]), int(x[1]) x2, y2 = int(x[2]), int(x[3]) pred_boxes.append( (x1, y1, x2, y2, lbl, conf)) return im, pred_boxes