LYP
4 years ago
1 changed files with 131 additions and 0 deletions
@ -0,0 +1,131 @@
|
||||
@[TOC](【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数) |
||||
|
||||
# 本文禁止转载! |
||||
本文地址:[https://blog.csdn.net/weixin_44936889/article/details/112002152](https://blog.csdn.net/weixin_44936889/article/details/112002152) |
||||
# 项目简介: |
||||
使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 |
||||
|
||||
代码地址(欢迎star): |
||||
|
||||
[https://github.com/Sharpiless/Yolov5-deepsort-inference](https://github.com/Sharpiless/Yolov5-deepsort-inference) |
||||
|
||||
最终效果: |
||||
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201231090541223.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70) |
||||
# YOLOv5检测器: |
||||
|
||||
```python |
||||
class Detector(baseDet): |
||||
|
||||
def __init__(self): |
||||
super(Detector, self).__init__() |
||||
self.init_model() |
||||
self.build_config() |
||||
|
||||
def init_model(self): |
||||
|
||||
self.weights = 'weights/yolov5m.pt' |
||||
self.device = '0' if torch.cuda.is_available() else 'cpu' |
||||
self.device = select_device(self.device) |
||||
model = attempt_load(self.weights, map_location=self.device) |
||||
model.to(self.device).eval() |
||||
model.half() |
||||
# torch.save(model, 'test.pt') |
||||
self.m = model |
||||
self.names = model.module.names if hasattr( |
||||
model, 'module') else model.names |
||||
|
||||
def preprocess(self, img): |
||||
|
||||
img0 = img.copy() |
||||
img = letterbox(img, new_shape=self.img_size)[0] |
||||
img = img[:, :, ::-1].transpose(2, 0, 1) |
||||
img = np.ascontiguousarray(img) |
||||
img = torch.from_numpy(img).to(self.device) |
||||
img = img.half() # 半精度 |
||||
img /= 255.0 # 图像归一化 |
||||
if img.ndimension() == 3: |
||||
img = img.unsqueeze(0) |
||||
|
||||
return img0, img |
||||
|
||||
def detect(self, im): |
||||
|
||||
im0, img = self.preprocess(im) |
||||
|
||||
pred = self.m(img, augment=False)[0] |
||||
pred = pred.float() |
||||
pred = non_max_suppression(pred, self.threshold, 0.4) |
||||
|
||||
pred_boxes = [] |
||||
for det in pred: |
||||
|
||||
if det is not None and len(det): |
||||
det[:, :4] = scale_coords( |
||||
img.shape[2:], det[:, :4], im0.shape).round() |
||||
|
||||
for *x, conf, cls_id in det: |
||||
lbl = self.names[int(cls_id)] |
||||
if not lbl in ['person', 'car', 'truck']: |
||||
continue |
||||
x1, y1 = int(x[0]), int(x[1]) |
||||
x2, y2 = int(x[2]), int(x[3]) |
||||
pred_boxes.append( |
||||
(x1, y1, x2, y2, lbl, conf)) |
||||
|
||||
return im, pred_boxes |
||||
|
||||
``` |
||||
|
||||
调用 self.detect 方法返回图像和预测结果 |
||||
|
||||
# DeepSort追踪器: |
||||
|
||||
```python |
||||
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, |
||||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, |
||||
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, |
||||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, |
||||
use_cuda=True) |
||||
``` |
||||
|
||||
调用 self.update 方法更新追踪结果 |
||||
|
||||
# 运行demo: |
||||
|
||||
```bash |
||||
python demo.py |
||||
``` |
||||
|
||||
# 训练自己的模型: |
||||
参考我的另一篇博客: |
||||
|
||||
[【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862) |
||||
|
||||
训练好后放到 weights 文件夹下 |
||||
|
||||
# 调用接口: |
||||
|
||||
## 创建检测器: |
||||
|
||||
```python |
||||
from AIDetector_pytorch import Detector |
||||
|
||||
det = Detector() |
||||
``` |
||||
|
||||
## 调用检测接口: |
||||
|
||||
```python |
||||
func_status = {} |
||||
func_status['headpose'] = None |
||||
|
||||
result = det.feedCap(im, func_status) |
||||
``` |
||||
|
||||
其中 im 为 BGR 图像 |
||||
|
||||
返回的 result 是字典,result['frame'] 返回可视化后的图像 |
||||
|
||||
# 联系作者: |
||||
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201120115403928.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70#pic_center) |
||||
|
Loading…
Reference in new issue