You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.1 KiB
69 lines
2.1 KiB
4 years ago
|
import torch
|
||
|
import numpy as np
|
||
|
from models.experimental import attempt_load
|
||
|
from utils.general import non_max_suppression, scale_coords, letterbox
|
||
|
from utils.torch_utils import select_device
|
||
|
from utils.BaseDetector import baseDet
|
||
|
|
||
|
|
||
|
class Detector(baseDet):
|
||
|
|
||
|
def __init__(self):
|
||
|
super(Detector, self).__init__()
|
||
|
self.init_model()
|
||
|
self.build_config()
|
||
|
|
||
|
def init_model(self):
|
||
|
|
||
|
self.weights = 'weights/yolov5m.pt'
|
||
|
self.device = '0' if torch.cuda.is_available() else 'cpu'
|
||
|
self.device = select_device(self.device)
|
||
|
model = attempt_load(self.weights, map_location=self.device)
|
||
|
model.to(self.device).eval()
|
||
|
model.half()
|
||
|
# torch.save(model, 'test.pt')
|
||
|
self.m = model
|
||
|
self.names = model.module.names if hasattr(
|
||
|
model, 'module') else model.names
|
||
|
|
||
|
def preprocess(self, img):
|
||
|
|
||
|
img0 = img.copy()
|
||
|
img = letterbox(img, new_shape=self.img_size)[0]
|
||
|
img = img[:, :, ::-1].transpose(2, 0, 1)
|
||
|
img = np.ascontiguousarray(img)
|
||
|
img = torch.from_numpy(img).to(self.device)
|
||
|
img = img.half() # 半精度
|
||
|
img /= 255.0 # 图像归一化
|
||
|
if img.ndimension() == 3:
|
||
|
img = img.unsqueeze(0)
|
||
|
|
||
|
return img0, img
|
||
|
|
||
|
def detect(self, im):
|
||
|
|
||
|
im0, img = self.preprocess(im)
|
||
|
|
||
|
pred = self.m(img, augment=False)[0]
|
||
|
pred = pred.float()
|
||
|
pred = non_max_suppression(pred, self.threshold, 0.4)
|
||
|
|
||
|
pred_boxes = []
|
||
|
for det in pred:
|
||
|
|
||
|
if det is not None and len(det):
|
||
|
det[:, :4] = scale_coords(
|
||
|
img.shape[2:], det[:, :4], im0.shape).round()
|
||
|
|
||
|
for *x, conf, cls_id in det:
|
||
|
lbl = self.names[int(cls_id)]
|
||
|
if not lbl in ['person', 'car', 'truck']:
|
||
|
continue
|
||
|
x1, y1 = int(x[0]), int(x[1])
|
||
|
x2, y2 = int(x[2]), int(x[3])
|
||
|
pred_boxes.append(
|
||
|
(x1, y1, x2, y2, lbl, conf))
|
||
|
|
||
|
return im, pred_boxes
|
||
|
|