mirror of https://github.com/testerSunshine/12306
优化model,改为tf加载
parent
bc337041d5
commit
d7f1172272
|
@ -1,4 +1,6 @@
|
|||
# coding=utf-8
|
||||
import base64
|
||||
import threading
|
||||
import unittest
|
||||
from collections import OrderedDict
|
||||
|
||||
|
@ -63,6 +65,19 @@ class testAll(unittest.TestCase):
|
|||
ua = UserAgent(verify_ssl=False)
|
||||
print(ua.random)
|
||||
|
||||
def testVerfyImage(self):
|
||||
"""
|
||||
测试模型加载识别
|
||||
:return:
|
||||
"""
|
||||
from verify.localVerifyCode import Verify
|
||||
v = Verify()
|
||||
with open('../tkcode.png', 'rb') as f:
|
||||
base64Image = base64.b64encode(f.read())
|
||||
for i in range(5):
|
||||
t = threading.Thread(target=v.verify, args=(base64Image,))
|
||||
t.start()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
|
@ -3,7 +3,9 @@ from PIL import Image
|
|||
|
||||
from config.urlConf import urls
|
||||
from myUrllib.httpUtils import HTTPClient
|
||||
from verify.localVerifyCode import verify
|
||||
from verify.localVerifyCode import Verify
|
||||
|
||||
v = Verify()
|
||||
|
||||
|
||||
def getRandCode(is_auto_code, auto_code_type, result):
|
||||
|
@ -17,7 +19,7 @@ def getRandCode(is_auto_code, auto_code_type, result):
|
|||
print(u"打码兔已关闭, 如需使用自动识别,请使用如果平台 auto_code_type == 2")
|
||||
return
|
||||
elif auto_code_type == 2:
|
||||
Result = verify(result)
|
||||
Result = v.verify(result)
|
||||
return codexy(Ofset=Result, is_raw_input=False)
|
||||
elif auto_code_type == 3:
|
||||
print("您已设置使用云打码,但是服务器资源有限,请尽快改为本地打码")
|
||||
|
|
|
@ -1,19 +1,27 @@
|
|||
# coding: utf-8
|
||||
import TickerConfig
|
||||
|
||||
if TickerConfig.AUTO_CODE_TYPE == 2:
|
||||
import base64
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
from keras import models, backend
|
||||
import tensorflow as tf
|
||||
from verify import pretreatment
|
||||
from verify.mlearn_for_image import preprocess_input
|
||||
|
||||
graph = tf.get_default_graph()
|
||||
|
||||
PATH = lambda p: os.path.abspath(
|
||||
os.path.join(os.path.dirname(__file__), p)
|
||||
)
|
||||
|
||||
|
||||
TEXT_MODEL = ""
|
||||
IMG_MODEL = ""
|
||||
|
||||
|
||||
def get_text(img, offset=0):
|
||||
text = pretreatment.get_text(img, offset)
|
||||
text = cv2.cvtColor(text, cv2.COLOR_BGR2GRAY)
|
||||
|
@ -34,48 +42,74 @@ def base64_to_image(base64_code):
|
|||
return img
|
||||
|
||||
|
||||
def verify(fn):
|
||||
backend.clear_session()
|
||||
verify_titles = ['打字机', '调色板', '跑步机', '毛线', '老虎', '安全帽', '沙包', '盘子', '本子', '药片', '双面胶', '龙舟', '红酒', '拖把', '卷尺', '海苔', '红豆', '黑板', '热水袋', '烛台', '钟表', '路灯', '沙拉', '海报', '公交卡', '樱桃', '创可贴', '牌坊', '苍蝇拍', '高压锅', '电线', '网球拍', '海鸥', '风铃', '订书机', '冰箱', '话梅', '排风机', '锅铲', '绿豆', '航母', '电子秤', '红枣', '金字塔', '鞭炮', '菠萝', '开瓶器', '电饭煲', '仪表盘', '棉棒', '篮球', '狮子', '蚂蚁', '蜡烛', '茶盅', '印章', '茶几', '啤酒', '档案袋', '挂钟', '刺绣', '铃铛', '护腕', '手掌印', '锦旗', '文具盒', '辣椒酱', '耳塞', '中国结', '蜥蜴', '剪纸', '漏斗', '锣', '蒸笼', '珊瑚', '雨靴', '薯条', '蜜蜂', '日历', '口哨']
|
||||
# 读取并预处理验证码
|
||||
img = base64_to_image(fn)
|
||||
text = get_text(img)
|
||||
imgs = np.array(list(pretreatment._get_imgs(img)))
|
||||
imgs = preprocess_input(imgs)
|
||||
text_list = []
|
||||
# 识别文字
|
||||
model = models.load_model(PATH('../model.v2.0.h5'))
|
||||
label = model.predict(text)
|
||||
label = label.argmax()
|
||||
text = verify_titles[label]
|
||||
text_list.append(text)
|
||||
# 获取下一个词
|
||||
# 根据第一个词的长度来定位第二个词的位置
|
||||
if len(text) == 1:
|
||||
offset = 27
|
||||
elif len(text) == 2:
|
||||
offset = 47
|
||||
else:
|
||||
offset = 60
|
||||
text = get_text(img, offset=offset)
|
||||
if text.mean() < 0.95:
|
||||
label = model.predict(text)
|
||||
|
||||
|
||||
class Verify:
|
||||
def __init__(self):
|
||||
self.textModel = ""
|
||||
self.imgModel = ""
|
||||
self.loadImgModel()
|
||||
self.loadTextModel()
|
||||
|
||||
def loadTextModel(self):
|
||||
if not self.textModel:
|
||||
self.textModel = models.load_model(PATH('../model.v2.0.h5'))
|
||||
|
||||
def loadImgModel(self):
|
||||
if not self.imgModel:
|
||||
self.imgModel = models.load_model(PATH('../12306.image.model.h5'))
|
||||
|
||||
def verify(self, fn):
|
||||
verify_titles = ['打字机', '调色板', '跑步机', '毛线', '老虎', '安全帽', '沙包', '盘子', '本子', '药片', '双面胶', '龙舟', '红酒', '拖把', '卷尺',
|
||||
'海苔', '红豆', '黑板', '热水袋', '烛台', '钟表', '路灯', '沙拉', '海报', '公交卡', '樱桃', '创可贴', '牌坊', '苍蝇拍', '高压锅',
|
||||
'电线', '网球拍', '海鸥', '风铃', '订书机', '冰箱', '话梅', '排风机', '锅铲', '绿豆', '航母', '电子秤', '红枣', '金字塔', '鞭炮',
|
||||
'菠萝', '开瓶器', '电饭煲', '仪表盘', '棉棒', '篮球', '狮子', '蚂蚁', '蜡烛', '茶盅', '印章', '茶几', '啤酒', '档案袋', '挂钟', '刺绣',
|
||||
'铃铛', '护腕', '手掌印', '锦旗', '文具盒', '辣椒酱', '耳塞', '中国结', '蜥蜴', '剪纸', '漏斗', '锣', '蒸笼', '珊瑚', '雨靴', '薯条',
|
||||
'蜜蜂', '日历', '口哨']
|
||||
# 读取并预处理验证码
|
||||
img = base64_to_image(fn)
|
||||
text = get_text(img)
|
||||
imgs = np.array(list(pretreatment._get_imgs(img)))
|
||||
imgs = preprocess_input(imgs)
|
||||
text_list = []
|
||||
# 识别文字
|
||||
self.loadTextModel()
|
||||
global graph
|
||||
with graph.as_default():
|
||||
label = self.textModel.predict(text)
|
||||
label = label.argmax()
|
||||
text = verify_titles[label]
|
||||
text_list.append(text)
|
||||
print("题目为{}".format(text_list))
|
||||
# 加载图片分类器
|
||||
model = models.load_model(PATH('../12306.image.model.h5'))
|
||||
labels = model.predict(imgs)
|
||||
labels = labels.argmax(axis=1)
|
||||
results = []
|
||||
for pos, label in enumerate(labels):
|
||||
l = verify_titles[label]
|
||||
print(pos+1, l)
|
||||
if l in text_list:
|
||||
results.append(str(pos+1))
|
||||
return results
|
||||
# 获取下一个词
|
||||
# 根据第一个词的长度来定位第二个词的位置
|
||||
if len(text) == 1:
|
||||
offset = 27
|
||||
elif len(text) == 2:
|
||||
offset = 47
|
||||
else:
|
||||
offset = 60
|
||||
text = get_text(img, offset=offset)
|
||||
if text.mean() < 0.95:
|
||||
with graph.as_default():
|
||||
label = self.textModel.predict(text)
|
||||
label = label.argmax()
|
||||
text = verify_titles[label]
|
||||
text_list.append(text)
|
||||
print("题目为{}".format(text_list))
|
||||
# 加载图片分类器
|
||||
self.loadImgModel()
|
||||
with graph.as_default():
|
||||
labels = self.imgModel.predict(imgs)
|
||||
labels = labels.argmax(axis=1)
|
||||
results = []
|
||||
for pos, label in enumerate(labels):
|
||||
l = verify_titles[label]
|
||||
print(pos + 1, l)
|
||||
if l in text_list:
|
||||
results.append(str(pos + 1))
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
verify("verify-img1.jpeg")
|
||||
pass
|
||||
# verify("verify-img1.jpeg")
|
||||
|
|
Loading…
Reference in New Issue