mirror of https://github.com/testerSunshine/12306
update version 1.1.114
parent
399f9b6626
commit
5fd9b8f8c9
|
@ -4,24 +4,23 @@
|
|||
# 如果这个时候捡漏捡到的话,也是可以付款成功的,也就是说,捡漏+候补,可以最大程度提升抢票成功率
|
||||
|
||||
# 刷票模式:1=刷票 2=候补+刷票
|
||||
TICKET_TYPE = 2
|
||||
TICKET_TYPE = 1
|
||||
|
||||
# 出发日期(list) "2018-01-06", "2018-01-07"
|
||||
STATION_DATES = [
|
||||
"2019-10-01"
|
||||
"2019-09-26"
|
||||
]
|
||||
|
||||
# 填入需要购买的车次(list),"G1353"
|
||||
# 修改车次填入规则,注:(以前设置的车次逻辑不变),如果车次填入为空,那么就是当日乘车所有车次都纳入筛选返回
|
||||
STATION_TRAINS = [
|
||||
"",
|
||||
]
|
||||
# 不填车次是整个list为空才算,如果不是为空,依然会判断车次的,这种是错误的写法 [""], 正确的写法 []
|
||||
STATION_TRAINS = []
|
||||
|
||||
# 出发城市,比如深圳北,就填深圳就搜得到
|
||||
FROM_STATION = ""
|
||||
FROM_STATION = "松山湖北"
|
||||
|
||||
# 到达城市 比如深圳北,就填深圳就搜得到
|
||||
TO_STATION = ""
|
||||
TO_STATION = "西平西"
|
||||
|
||||
# 座位(list) 多个座位ex:
|
||||
# "商务座",
|
||||
|
@ -34,7 +33,7 @@ TO_STATION = ""
|
|||
# "无座",
|
||||
# "动卧",
|
||||
SET_TYPE = [
|
||||
"",
|
||||
"无座",
|
||||
]
|
||||
|
||||
# 当余票小于乘车人,如果选择优先提交,则删减联系人和余票数一致在提交
|
||||
|
@ -45,12 +44,13 @@ IS_MORE_TICKET = True
|
|||
# - "张三"
|
||||
# - "李四"
|
||||
TICKET_PEOPLES = [
|
||||
"",
|
||||
"文贤平",
|
||||
"李梦云",
|
||||
]
|
||||
|
||||
# 12306登录账号
|
||||
USER = ""
|
||||
PWD = ""
|
||||
USER = "qqxin1011"
|
||||
PWD = "quxm19861011"
|
||||
|
||||
# 加入小黑屋时间默认为5分钟,此功能为了防止僵尸票导致一直下单不成功错过正常的票
|
||||
TICKET_BLACK_LIST_TIME = 5
|
||||
|
@ -58,6 +58,10 @@ TICKET_BLACK_LIST_TIME = 5
|
|||
# 自动打码
|
||||
IS_AUTO_CODE = True
|
||||
|
||||
# 设置2本地自动打码,需要配置tensorflow和keras库,3为云打码,由于云打码服务器资源有限(为2h4C的cpu服务器),请不要恶意请求,不然只能关闭服务器
|
||||
# ps: 请不要一直依赖云服务器资源,在此向提供服务器的"do it"同学表示感谢
|
||||
AUTO_CODE_TYPE = 2
|
||||
|
||||
# 邮箱配置,如果抢票成功,将通过邮件配置通知给您
|
||||
# 列举163
|
||||
# email: "xxx@163.com"
|
||||
|
@ -73,11 +77,11 @@ IS_AUTO_CODE = True
|
|||
# host: "smtp.qq.com"
|
||||
EMAIL_CONF = {
|
||||
"IS_MAIL": True,
|
||||
"email": "",
|
||||
"notice_email_list": "",
|
||||
"username": "",
|
||||
"password": "",
|
||||
"host": "",
|
||||
"email": "931128603@qq.com",
|
||||
"notice_email_list": "931128603@qq.com",
|
||||
"username": "931128603@qq.com",
|
||||
"password": "lwvgfrcydzyvbfjf",
|
||||
"host": "smtp.qq.com",
|
||||
}
|
||||
|
||||
# 是否开启 server酱 微信提醒, 使用前需要前往 http://sc.ftqq.com/3.version 扫码绑定获取 SECRET 并关注获得抢票结果通知的公众号
|
||||
|
@ -111,7 +115,7 @@ OPEN_TIME = "13:00:00"
|
|||
COOKIE_TYPE = 1
|
||||
# 如果COOKIE_TYPE=1,则需配置chromeDriver路径,下载地址http://chromedriver.storage.googleapis.com/index.html
|
||||
# chromedriver配置版本只要和chrome的大版本匹配就行
|
||||
CHROME_PATH = ""
|
||||
CHROME_PATH = "/Users/wenxianping/Downloads/chromedriver"
|
||||
|
||||
# 1=>为一直随机ua,2->只启动的时候随机一次ua
|
||||
RANDOM_AGENT = 2
|
||||
|
@ -133,5 +137,6 @@ PASSENGER_TICKER_STR = {
|
|||
MAX_TIME = 5
|
||||
# 最小间隔请求时间
|
||||
MIN_TIME = 3
|
||||
|
||||
# 软件版本
|
||||
RE_VERSION = "1.1.113"
|
||||
RE_VERSION = "1.1.114"
|
|
@ -185,3 +185,7 @@
|
|||
- 增长随机停留时长
|
||||
- 增长用户心跳时间,减少对服务器压力
|
||||
- 优化下单逻辑
|
||||
|
||||
- 2019.09.18更新
|
||||
- 修改下单问题
|
||||
- 优化车次打印
|
|
@ -587,6 +587,16 @@ urls = {
|
|||
"is_json": True,
|
||||
},
|
||||
|
||||
|
||||
|
||||
"autoVerifyImage": { # 云打码接口
|
||||
"req_url": "/verify/base64/",
|
||||
"req_type": "post",
|
||||
"Referer": "",
|
||||
"Host": "111.230.237.182:8000",
|
||||
"re_try": 2,
|
||||
"re_time": 2,
|
||||
"s_time": 2,
|
||||
"is_logger": True,
|
||||
"is_json": True,
|
||||
"httpType": "http"
|
||||
},
|
||||
}
|
|
@ -36,7 +36,7 @@ class select:
|
|||
def __init__(self):
|
||||
self.get_ticket_info()
|
||||
self._station_seat = [seat_conf[x] for x in TickerConfig.SET_TYPE]
|
||||
self.auto_code_type = 2
|
||||
self.auto_code_type = TickerConfig.AUTO_CODE_TYPE
|
||||
self.httpClint = HTTPClient(TickerConfig.IS_PROXY)
|
||||
self.urls = urlConf.urls
|
||||
self.login = GoLogin(self, TickerConfig.IS_AUTO_CODE, self.auto_code_type)
|
||||
|
@ -55,10 +55,14 @@ class select:
|
|||
获取配置信息
|
||||
:return:
|
||||
"""
|
||||
|
||||
print(u"*" * 50)
|
||||
print(f"检查当前版本为: {TickerConfig.RE_VERSION}")
|
||||
print(u"检查当前python版本为:{},目前版本只支持3.6以上".format(sys.version.split(" ")[0]))
|
||||
print(u"12306刷票小助手,最后更新于2019.09.15,请勿作为商业用途,交流群号:"
|
||||
version = sys.version.split(" ")[0]
|
||||
print(u"检查当前python版本为:{},目前版本只支持3.6以上".format(version))
|
||||
if version < "3.6.0":
|
||||
raise Exception
|
||||
print(u"12306刷票小助手,最后更新于2019.09.18,请勿作为商业用途,交流群号:"
|
||||
u" 1群:286271084(已满)\n"
|
||||
u" 2群:649992274(已满)\n"
|
||||
u" 3群:632501142(已满)\n"
|
||||
|
@ -69,7 +73,7 @@ class select:
|
|||
u" 8群: 620629239(未满)\n"
|
||||
)
|
||||
print(
|
||||
f"当前配置:\n出发站:{TickerConfig.FROM_STATION}\n到达站:{TickerConfig.TO_STATION}\n乘车日期:{','.join(TickerConfig.STATION_DATES)}\n坐席:{','.join(TickerConfig.SET_TYPE)}\n是否有票优先提交:{TickerConfig.IS_MORE_TICKET}\n乘车人:{TickerConfig.TICKET_PEOPLES}\n" \
|
||||
f"当前配置:\n出发站:{TickerConfig.FROM_STATION}\n到达站:{TickerConfig.TO_STATION}\n车次: {','.join(TickerConfig.STATION_TRAINS) or '所有车次'}\n乘车日期:{','.join(TickerConfig.STATION_DATES)}\n坐席:{','.join(TickerConfig.SET_TYPE)}\n是否有票优先提交:{TickerConfig.IS_MORE_TICKET}\n乘车人:{TickerConfig.TICKET_PEOPLES}\n" \
|
||||
f"刷新间隔: 随机(1-3S)\n僵尸票关小黑屋时长: {TickerConfig.TICKET_BLACK_LIST_TIME}\n下单接口: {TickerConfig.ORDER_TYPE}\n下单模式: {TickerConfig.ORDER_MODEL}\n预售踩点时间:{TickerConfig.OPEN_TIME}")
|
||||
print(u"*" * 50)
|
||||
|
||||
|
@ -244,7 +248,7 @@ class select:
|
|||
else:
|
||||
random_time = round(random.uniform(sleep_time_s, sleep_time_t), 2)
|
||||
nateMsg = ' 无候补机会' if TickerConfig.ORDER_TYPE == 2 else ""
|
||||
print(f"正在第{num}次查询 随机停留时长:{random_time} 乘车日期: {','.join(TickerConfig.STATION_DATES)} 车次:{'.'.join(TickerConfig.STATION_TRAINS)} 下单无票{nateMsg} 耗时:{(datetime.datetime.now() - now).microseconds / 1000}ms")
|
||||
print(f"正在第{num}次查询 随机停留时长:{random_time} 乘车日期: {','.join(TickerConfig.STATION_DATES)} 车次:{','.join(TickerConfig.STATION_TRAINS) or '所有车次'} 下单无票{nateMsg} 耗时:{(datetime.datetime.now() - now).microseconds / 1000}ms")
|
||||
time.sleep(random_time)
|
||||
except PassengerUserException as e:
|
||||
print(e)
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
# coding=utf-8
|
||||
from PIL import Image
|
||||
|
||||
from config.urlConf import urls
|
||||
from myUrllib.httpUtils import HTTPClient
|
||||
from verify.localVerifyCode import verify
|
||||
|
||||
|
||||
|
@ -14,9 +16,15 @@ def getRandCode(is_auto_code, auto_code_type, result):
|
|||
if auto_code_type == 1:
|
||||
print(u"打码兔已关闭, 如需使用自动识别,请使用如果平台 auto_code_type == 2")
|
||||
return
|
||||
if auto_code_type == 2:
|
||||
elif auto_code_type == 2:
|
||||
Result = verify(result)
|
||||
return codexy(Ofset=Result, is_raw_input=False)
|
||||
elif auto_code_type == 3:
|
||||
print("您已设置使用云打码,但是服务器资源有限,请尽快改为本地打码")
|
||||
http = HTTPClient(0)
|
||||
Result = http.send(urls.get("autoVerifyImage"), {"imageFile": result})
|
||||
if Result and Result.get("code") is 0:
|
||||
return codexy(Ofset=Result.get("data"), is_raw_input=False)
|
||||
else:
|
||||
img = Image.open('./tkcode.png')
|
||||
img.show()
|
||||
|
|
|
@ -53,7 +53,7 @@ class query:
|
|||
:param ticket_info:
|
||||
:return:
|
||||
"""
|
||||
if self.station_dates:
|
||||
if self.station_dates and self.station_trains:
|
||||
return ticket_info[3] in self.station_trains
|
||||
else:
|
||||
return True
|
||||
|
@ -119,7 +119,7 @@ class query:
|
|||
self.to_station_h,
|
||||
seat_conf_2[j],
|
||||
ticket_num))
|
||||
if seat_conf_2[j] == "无座" and ticket_info[3][0] in ["G", "D"]:
|
||||
if seat_conf_2[j] == "无座" and ticket_info[3][0] in ["G", "D", "C"]:
|
||||
seat = 30 # GD开头的无座直接强制改为二等座车次
|
||||
if wrapcache.get(train_no):
|
||||
print(ticket.QUERY_IN_BLACK_LIST.format(train_no))
|
||||
|
|
|
@ -135,7 +135,7 @@ class HTTPClient(object):
|
|||
self.setHeadersReferer(urls["Referer"])
|
||||
if is_logger:
|
||||
logger.log(
|
||||
u"url: {0}\n入参: {1}\n请求方式: {2}\n".format(req_url, data, method, ))
|
||||
u"url: {0}\n入参: {1}\n请求方式: {2}\n".format(req_url, data, method))
|
||||
self.setHeadersHost(urls["Host"])
|
||||
if is_test_cdn:
|
||||
url_host = self._cdn
|
||||
|
@ -157,7 +157,7 @@ class HTTPClient(object):
|
|||
except:
|
||||
pass
|
||||
response = self._s.request(method=method,
|
||||
timeout=2,
|
||||
timeout=5,
|
||||
proxies=self._proxies,
|
||||
url=http + "://" + url_host + req_url,
|
||||
data=data,
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# coding: utf-8
|
||||
import base64
|
||||
import os
|
||||
import TickerConfig
|
||||
if TickerConfig.AUTO_CODE_TYPE == 2:
|
||||
import base64
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
from keras import models, backend
|
||||
from verify import pretreatment
|
||||
from verify.mlearn_for_image import preprocess_input
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from keras import models, backend
|
||||
|
||||
|
||||
from verify import pretreatment
|
||||
from verify.mlearn_for_image import preprocess_input
|
||||
PATH = lambda p: os.path.abspath(
|
||||
os.path.join(os.path.dirname(__file__), p)
|
||||
)
|
||||
|
|
|
@ -1,14 +1,16 @@
|
|||
# coding: utf-8
|
||||
import sys
|
||||
import TickerConfig
|
||||
if TickerConfig.AUTO_CODE_TYPE == 2:
|
||||
import sys
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from keras import models
|
||||
from keras import layers
|
||||
from keras import optimizers
|
||||
from keras.applications import VGG16
|
||||
from keras.callbacks import ReduceLROnPlateau
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
import cv2
|
||||
import numpy as np
|
||||
from keras import models
|
||||
from keras import layers
|
||||
from keras import optimizers
|
||||
from keras.applications import VGG16
|
||||
from keras.callbacks import ReduceLROnPlateau
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
|
||||
def preprocess_input(x):
|
||||
|
|
|
@ -3,14 +3,16 @@
|
|||
# 功能:对图像进行预处理,将文字部分单独提取出来
|
||||
# 并存放到ocr目录下
|
||||
# 文件名为原验证码文件的文件名
|
||||
import hashlib
|
||||
import os
|
||||
import pathlib
|
||||
import TickerConfig
|
||||
if TickerConfig.AUTO_CODE_TYPE == 2:
|
||||
import hashlib
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import requests
|
||||
import scipy.fftpack
|
||||
import cv2
|
||||
import numpy as np
|
||||
import requests
|
||||
import scipy.fftpack
|
||||
|
||||
|
||||
PATH = 'imgs'
|
||||
|
|
Loading…
Reference in New Issue