You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
v2ray-core/transport/internet/kcp/kcp.go

904 lines
19 KiB

// Package kcp - A Fast and Reliable ARQ Protocol
//
// Acknowledgement:
// skywind3000@github for inventing the KCP protocol
// xtaci@github for translating to Golang
package kcp
import (
"encoding/binary"
)
const (
IKCP_RTO_NDL = 30 // no delay min rto
IKCP_RTO_MIN = 100 // normal min rto
IKCP_RTO_DEF = 200
IKCP_RTO_MAX = 60000
IKCP_CMD_PUSH = 81 // cmd: push data
IKCP_CMD_ACK = 82 // cmd: ack
IKCP_CMD_WASK = 83 // cmd: window probe (ask)
IKCP_CMD_WINS = 84 // cmd: window size (tell)
IKCP_ASK_SEND = 1 // need to send IKCP_CMD_WASK
IKCP_ASK_TELL = 2 // need to send IKCP_CMD_WINS
IKCP_WND_SND = 32
IKCP_WND_RCV = 32
IKCP_MTU_DEF = 1400
IKCP_ACK_FAST = 3
IKCP_INTERVAL = 100
IKCP_OVERHEAD = 24
IKCP_DEADLINK = 20
IKCP_THRESH_INIT = 2
IKCP_THRESH_MIN = 2
IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
)
// Output is a closure which captures conn and calls conn.Write
type Output func(buf []byte, size int)
/* encode 8 bits unsigned int */
func ikcp_encode8u(p []byte, c byte) []byte {
p[0] = c
return p[1:]
}
/* decode 8 bits unsigned int */
func ikcp_decode8u(p []byte, c *byte) []byte {
*c = p[0]
return p[1:]
}
/* encode 16 bits unsigned int (lsb) */
func ikcp_encode16u(p []byte, w uint16) []byte {
binary.LittleEndian.PutUint16(p, w)
return p[2:]
}
/* decode 16 bits unsigned int (lsb) */
func ikcp_decode16u(p []byte, w *uint16) []byte {
*w = binary.LittleEndian.Uint16(p)
return p[2:]
}
/* encode 32 bits unsigned int (lsb) */
func ikcp_encode32u(p []byte, l uint32) []byte {
binary.LittleEndian.PutUint32(p, l)
return p[4:]
}
/* decode 32 bits unsigned int (lsb) */
func ikcp_decode32u(p []byte, l *uint32) []byte {
*l = binary.LittleEndian.Uint32(p)
return p[4:]
}
func _imin_(a, b uint32) uint32 {
if a <= b {
return a
} else {
return b
}
}
func _imax_(a, b uint32) uint32 {
if a >= b {
return a
} else {
return b
}
}
func _itimediff(later, earlier uint32) int32 {
return (int32)(later - earlier)
}
// Segment defines a KCP segment
type Segment struct {
conv uint32
cmd uint32
frg uint32
wnd uint32
ts uint32
sn uint32
una uint32
resendts uint32
rto uint32
fastack uint32
xmit uint32
data []byte
}
// encode a segment into buffer
func (seg *Segment) encode(ptr []byte) []byte {
ptr = ikcp_encode32u(ptr, seg.conv)
ptr = ikcp_encode8u(ptr, uint8(seg.cmd))
ptr = ikcp_encode8u(ptr, uint8(seg.frg))
ptr = ikcp_encode16u(ptr, uint16(seg.wnd))
ptr = ikcp_encode32u(ptr, seg.ts)
ptr = ikcp_encode32u(ptr, seg.sn)
ptr = ikcp_encode32u(ptr, seg.una)
ptr = ikcp_encode32u(ptr, uint32(len(seg.data)))
return ptr
}
// NewSegment creates a KCP segment
func NewSegment(size int) *Segment {
seg := new(Segment)
seg.data = make([]byte, size)
return seg
}
// KCP defines a single KCP connection
type KCP struct {
conv, mtu, mss, state uint32
snd_una, snd_nxt, rcv_nxt uint32
ts_recent, ts_lastack, ssthresh uint32
rx_rttval, rx_srtt, rx_rto, rx_minrto uint32
snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
current, interval, ts_flush, xmit uint32
nodelay, updated uint32
ts_probe, probe_wait uint32
dead_link, incr uint32
snd_queue []Segment
rcv_queue []Segment
snd_buf []Segment
rcv_buf []Segment
acklist []uint32
buffer []byte
fastresend int32
nocwnd int32
logmask int32
output Output
}
// NewKCP create a new kcp control object, 'conv' must equal in two endpoint
// from the same connection.
func NewKCP(conv uint32, output Output) *KCP {
kcp := new(KCP)
kcp.conv = conv
kcp.snd_wnd = IKCP_WND_SND
kcp.rcv_wnd = IKCP_WND_RCV
kcp.rmt_wnd = IKCP_WND_RCV
kcp.mtu = IKCP_MTU_DEF
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = make([]byte, (kcp.mtu+IKCP_OVERHEAD)*3)
kcp.rx_rto = IKCP_RTO_DEF
kcp.rx_minrto = IKCP_RTO_MIN
kcp.interval = IKCP_INTERVAL
kcp.ts_flush = IKCP_INTERVAL
kcp.ssthresh = IKCP_THRESH_INIT
kcp.dead_link = IKCP_DEADLINK
kcp.output = output
return kcp
}
// PeekSize checks the size of next message in the recv queue
func (kcp *KCP) PeekSize() (length int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
seg := &kcp.rcv_queue[0]
if seg.frg == 0 {
return len(seg.data)
}
if len(kcp.rcv_queue) < int(seg.frg+1) {
return -1
}
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
length += len(seg.data)
if seg.frg == 0 {
break
}
}
return
}
// Recv is user/upper level recv: returns size, returns below zero for EAGAIN
func (kcp *KCP) Recv(buffer []byte) (n int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
peeksize := kcp.PeekSize()
if peeksize < 0 {
return -2
}
if peeksize > len(buffer) {
return -3
}
var fast_recover bool
if len(kcp.rcv_queue) >= int(kcp.rcv_wnd) {
fast_recover = true
}
// merge fragment
count := 0
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
copy(buffer, seg.data)
buffer = buffer[len(seg.data):]
n += len(seg.data)
count++
if seg.frg == 0 {
break
}
}
kcp.rcv_queue = kcp.rcv_queue[count:]
// move available data from rcv_buf -> rcv_queue
count = 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
kcp.rcv_queue = append(kcp.rcv_queue, *seg)
kcp.rcv_nxt++
count++
} else {
break
}
}
kcp.rcv_buf = kcp.rcv_buf[count:]
// fast recover
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) && fast_recover {
// ready to send back IKCP_CMD_WINS in ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
}
return
}
// Send is user/upper level send, returns below zero for error
func (kcp *KCP) Send(buffer []byte) int {
var count int
if len(buffer) == 0 {
return -1
}
if len(buffer) < int(kcp.mss) {
count = 1
} else {
count = (len(buffer) + int(kcp.mss) - 1) / int(kcp.mss)
}
if count > 255 {
return -2
}
if count == 0 {
count = 1
}
for i := 0; i < count; i++ {
var size int
if len(buffer) > int(kcp.mss) {
size = int(kcp.mss)
} else {
size = len(buffer)
}
seg := NewSegment(size)
copy(seg.data, buffer[:size])
seg.frg = uint32(count - i - 1)
kcp.snd_queue = append(kcp.snd_queue, *seg)
buffer = buffer[size:]
}
return 0
}
// https://tools.ietf.org/html/rfc6298
func (kcp *KCP) update_ack(rtt int32) {
var rto uint32 = 0
if kcp.rx_srtt == 0 {
kcp.rx_srtt = uint32(rtt)
kcp.rx_rttval = uint32(rtt) / 2
} else {
delta := rtt - int32(kcp.rx_srtt)
if delta < 0 {
delta = -delta
}
kcp.rx_rttval = (3*kcp.rx_rttval + uint32(delta)) / 4
kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8
if kcp.rx_srtt < 1 {
kcp.rx_srtt = 1
}
}
rto = kcp.rx_srtt + _imax_(1, 4*kcp.rx_rttval)
if rto > IKCP_RTO_MAX {
rto = IKCP_RTO_MAX
}
if rto < kcp.rx_minrto {
rto = kcp.rx_minrto
}
kcp.rx_rto = rto
}
func (kcp *KCP) shrink_buf() {
if len(kcp.snd_buf) > 0 {
seg := &kcp.snd_buf[0]
kcp.snd_una = seg.sn
} else {
kcp.snd_una = kcp.snd_nxt
}
}
func (kcp *KCP) parse_ack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if sn == seg.sn {
kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)
break
}
if _itimediff(sn, seg.sn) < 0 {
break
}
}
}
func (kcp *KCP) parse_fastack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(sn, seg.sn) < 0 {
break
} else if sn != seg.sn {
seg.fastack++
}
}
}
func (kcp *KCP) parse_una(una uint32) {
count := 0
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(una, seg.sn) > 0 {
count++
} else {
break
}
}
kcp.snd_buf = kcp.snd_buf[count:]
}
// ack append
func (kcp *KCP) ack_push(sn, ts uint32) {
kcp.acklist = append(kcp.acklist, sn, ts)
}
func (kcp *KCP) ack_get(p int) (sn, ts uint32) {
return kcp.acklist[p*2+0], kcp.acklist[p*2+1]
}
func (kcp *KCP) parse_data(newseg *Segment) {
sn := newseg.sn
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
_itimediff(sn, kcp.rcv_nxt) < 0 {
return
}
n := len(kcp.rcv_buf) - 1
insert_idx := 0
repeat := false
for i := n; i >= 0; i-- {
seg := &kcp.rcv_buf[i]
if seg.sn == sn {
repeat = true
break
}
if _itimediff(sn, seg.sn) > 0 {
insert_idx = i + 1
break
}
}
if !repeat {
if insert_idx == n+1 {
kcp.rcv_buf = append(kcp.rcv_buf, *newseg)
} else {
kcp.rcv_buf = append(kcp.rcv_buf, Segment{})
copy(kcp.rcv_buf[insert_idx+1:], kcp.rcv_buf[insert_idx:])
kcp.rcv_buf[insert_idx] = *newseg
}
}
// move available data from rcv_buf -> rcv_queue
count := 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[k])
kcp.rcv_nxt++
count++
} else {
break
}
}
kcp.rcv_buf = kcp.rcv_buf[count:]
}
// Input when you received a low level packet (eg. UDP packet), call it
func (kcp *KCP) Input(data []byte) int {
una := kcp.snd_una
if len(data) < IKCP_OVERHEAD {
return -1
}
var maxack uint32
var flag int
for {
var ts, sn, length, una, conv uint32
var wnd uint16
var cmd, frg uint8
if len(data) < int(IKCP_OVERHEAD) {
break
}
data = ikcp_decode32u(data, &conv)
if conv != kcp.conv {
return -1
}
data = ikcp_decode8u(data, &cmd)
data = ikcp_decode8u(data, &frg)
data = ikcp_decode16u(data, &wnd)
data = ikcp_decode32u(data, &ts)
data = ikcp_decode32u(data, &sn)
data = ikcp_decode32u(data, &una)
data = ikcp_decode32u(data, &length)
if len(data) < int(length) {
return -2
}
if cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK &&
cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS {
return -3
}
kcp.rmt_wnd = uint32(wnd)
kcp.parse_una(una)
kcp.shrink_buf()
if cmd == IKCP_CMD_ACK {
if _itimediff(kcp.current, ts) >= 0 {
kcp.update_ack(_itimediff(kcp.current, ts))
}
kcp.parse_ack(sn)
kcp.shrink_buf()
if flag == 0 {
flag = 1
maxack = sn
} else if _itimediff(sn, maxack) > 0 {
maxack = sn
}
} else if cmd == IKCP_CMD_PUSH {
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) < 0 {
kcp.ack_push(sn, ts)
if _itimediff(sn, kcp.rcv_nxt) >= 0 {
seg := NewSegment(int(length))
seg.conv = conv
seg.cmd = uint32(cmd)
seg.frg = uint32(frg)
seg.wnd = uint32(wnd)
seg.ts = ts
seg.sn = sn
seg.una = una
copy(seg.data, data[:length])
kcp.parse_data(seg)
}
}
} else if cmd == IKCP_CMD_WASK {
// ready to send back IKCP_CMD_WINS in Ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
} else if cmd == IKCP_CMD_WINS {
// do nothing
} else {
return -3
}
data = data[length:]
}
if flag != 0 {
kcp.parse_fastack(maxack)
}
if _itimediff(kcp.snd_una, una) > 0 {
if kcp.cwnd < kcp.rmt_wnd {
mss := kcp.mss
if kcp.cwnd < kcp.ssthresh {
kcp.cwnd++
kcp.incr += mss
} else {
if kcp.incr < mss {
kcp.incr = mss
}
kcp.incr += (mss*mss)/kcp.incr + (mss / 16)
if (kcp.cwnd+1)*mss <= kcp.incr {
kcp.cwnd++
}
}
if kcp.cwnd > kcp.rmt_wnd {
kcp.cwnd = kcp.rmt_wnd
kcp.incr = kcp.rmt_wnd * mss
}
}
}
return 0
}
func (kcp *KCP) wnd_unused() int32 {
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
return int32(int(kcp.rcv_wnd) - len(kcp.rcv_queue))
}
return 0
}
// flush pending data
func (kcp *KCP) flush() {
current := kcp.current
buffer := kcp.buffer
change := 0
lost := false
if kcp.updated == 0 {
return
}
var seg Segment
seg.conv = kcp.conv
seg.cmd = IKCP_CMD_ACK
seg.wnd = uint32(kcp.wnd_unused())
seg.una = kcp.rcv_nxt
// flush acknowledges
count := len(kcp.acklist) / 2
ptr := buffer
for i := 0; i < count; i++ {
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
seg.sn, seg.ts = kcp.ack_get(i)
ptr = seg.encode(ptr)
}
kcp.acklist = nil
// probe window size (if remote window size equals zero)
if kcp.rmt_wnd == 0 {
if kcp.probe_wait == 0 {
kcp.probe_wait = IKCP_PROBE_INIT
kcp.ts_probe = kcp.current + kcp.probe_wait
} else {
if _itimediff(kcp.current, kcp.ts_probe) >= 0 {
if kcp.probe_wait < IKCP_PROBE_INIT {
kcp.probe_wait = IKCP_PROBE_INIT
}
kcp.probe_wait += kcp.probe_wait / 2
if kcp.probe_wait > IKCP_PROBE_LIMIT {
kcp.probe_wait = IKCP_PROBE_LIMIT
}
kcp.ts_probe = kcp.current + kcp.probe_wait
kcp.probe |= IKCP_ASK_SEND
}
}
} else {
kcp.ts_probe = 0
kcp.probe_wait = 0
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_SEND) != 0 {
seg.cmd = IKCP_CMD_WASK
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = seg.encode(ptr)
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_TELL) != 0 {
seg.cmd = IKCP_CMD_WINS
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = seg.encode(ptr)
}
kcp.probe = 0
// calculate window size
cwnd := _imin_(kcp.snd_wnd, kcp.rmt_wnd)
if kcp.nocwnd == 0 {
cwnd = _imin_(kcp.cwnd, cwnd)
}
count = 0
for k := range kcp.snd_queue {
if _itimediff(kcp.snd_nxt, kcp.snd_una+cwnd) >= 0 {
break
}
newseg := kcp.snd_queue[k]
newseg.conv = kcp.conv
newseg.cmd = IKCP_CMD_PUSH
newseg.wnd = seg.wnd
newseg.ts = current
newseg.sn = kcp.snd_nxt
newseg.una = kcp.rcv_nxt
newseg.resendts = current
newseg.rto = kcp.rx_rto
newseg.fastack = 0
newseg.xmit = 0
kcp.snd_buf = append(kcp.snd_buf, newseg)
kcp.snd_nxt++
count++
}
kcp.snd_queue = kcp.snd_queue[count:]
// calculate resent
resent := uint32(kcp.fastresend)
if kcp.fastresend <= 0 {
resent = 0xffffffff
}
rtomin := (kcp.rx_rto >> 3)
if kcp.nodelay != 0 {
rtomin = 0
}
// flush data segments
for k := range kcp.snd_buf {
segment := &kcp.snd_buf[k]
needsend := false
if segment.xmit == 0 {
needsend = true
segment.xmit++
segment.rto = kcp.rx_rto
segment.resendts = current + segment.rto + rtomin
} else if _itimediff(current, segment.resendts) >= 0 {
needsend = true
segment.xmit++
kcp.xmit++
if kcp.nodelay == 0 {
segment.rto += kcp.rx_rto
} else {
segment.rto += kcp.rx_rto / 2
}
segment.resendts = current + segment.rto
lost = true
} else if segment.fastack >= resent {
needsend = true
segment.xmit++
segment.fastack = 0
segment.resendts = current + segment.rto
change++
}
if needsend {
segment.ts = current
segment.wnd = seg.wnd
segment.una = kcp.rcv_nxt
size := len(buffer) - len(ptr)
need := IKCP_OVERHEAD + len(segment.data)
if size+need >= int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = segment.encode(ptr)
copy(ptr, segment.data)
ptr = ptr[len(segment.data):]
if segment.xmit >= kcp.dead_link {
kcp.state = 0xFFFFFFFF
}
}
}
// flash remain segments
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
// update ssthresh
// rate halving, https://tools.ietf.org/html/rfc6937
if change != 0 {
inflight := kcp.snd_nxt - kcp.snd_una
kcp.ssthresh = inflight / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = kcp.ssthresh + resent
kcp.incr = kcp.cwnd * kcp.mss
}
// congestion control, https://tools.ietf.org/html/rfc5681
if lost {
kcp.ssthresh = cwnd / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = 1
kcp.incr = kcp.mss
}
if kcp.cwnd < 1 {
kcp.cwnd = 1
kcp.incr = kcp.mss
}
}
// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
func (kcp *KCP) Update(current uint32) {
var slap int32
kcp.current = current
if kcp.updated == 0 {
kcp.updated = 1
kcp.ts_flush = kcp.current
}
slap = _itimediff(kcp.current, kcp.ts_flush)
if slap >= 10000 || slap < -10000 {
kcp.ts_flush = kcp.current
slap = 0
}
if slap >= 0 {
kcp.ts_flush += kcp.interval
if _itimediff(kcp.current, kcp.ts_flush) >= 0 {
kcp.ts_flush = kcp.current + kcp.interval
}
kcp.flush()
}
}
// Check determines when should you invoke ikcp_update:
// returns when you should invoke ikcp_update in millisec, if there
// is no ikcp_input/_send calling. you can call ikcp_update in that
// time, instead of call update repeatly.
// Important to reduce unnacessary ikcp_update invoking. use it to
// schedule ikcp_update (eg. implementing an epoll-like mechanism,
// or optimize ikcp_update when handling massive kcp connections)
func (kcp *KCP) Check(current uint32) uint32 {
ts_flush := kcp.ts_flush
tm_flush := int32(0x7fffffff)
tm_packet := int32(0x7fffffff)
minimal := uint32(0)
if kcp.updated == 0 {
return current
}
if _itimediff(current, ts_flush) >= 10000 ||
_itimediff(current, ts_flush) < -10000 {
ts_flush = current
}
if _itimediff(current, ts_flush) >= 0 {
return current
}
tm_flush = _itimediff(ts_flush, current)
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
diff := _itimediff(seg.resendts, current)
if diff <= 0 {
return current
}
if diff < tm_packet {
tm_packet = diff
}
}
minimal = uint32(tm_packet)
if tm_packet >= tm_flush {
minimal = uint32(tm_flush)
}
if minimal >= kcp.interval {
minimal = kcp.interval
}
return current + minimal
}
// SetMtu changes MTU size, default is 1400
func (kcp *KCP) SetMtu(mtu int) int {
if mtu < 50 || mtu < IKCP_OVERHEAD {
return -1
}
buffer := make([]byte, (mtu+IKCP_OVERHEAD)*3)
if buffer == nil {
return -2
}
kcp.mtu = uint32(mtu)
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = buffer
return 0
}
func (kcp *KCP) Interval(interval int) int {
if interval > 5000 {
interval = 5000
} else if interval < 10 {
interval = 10
}
kcp.interval = uint32(interval)
return 0
}
// NoDelay options
// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
// nodelay: 0:disable(default), 1:enable
// interval: internal update timer interval in millisec, default is 100ms
// resend: 0:disable fast resend(default), 1:enable fast resend
// nc: 0:normal congestion control(default), 1:disable congestion control
func (kcp *KCP) NoDelay(nodelay, interval, resend, nc int) int {
if nodelay >= 0 {
kcp.nodelay = uint32(nodelay)
if nodelay != 0 {
kcp.rx_minrto = IKCP_RTO_NDL
} else {
kcp.rx_minrto = IKCP_RTO_MIN
}
}
if interval >= 0 {
if interval > 5000 {
interval = 5000
} else if interval < 10 {
interval = 10
}
kcp.interval = uint32(interval)
}
if resend >= 0 {
kcp.fastresend = int32(resend)
}
if nc >= 0 {
kcp.nocwnd = int32(nc)
}
return 0
}
// WndSize sets maximum window size: sndwnd=32, rcvwnd=32 by default
func (kcp *KCP) WndSize(sndwnd, rcvwnd int) int {
if sndwnd > 0 {
kcp.snd_wnd = uint32(sndwnd)
}
if rcvwnd > 0 {
kcp.rcv_wnd = uint32(rcvwnd)
}
return 0
}
// WaitSnd gets how many packet is waiting to be sent
func (kcp *KCP) WaitSnd() int {
return len(kcp.snd_buf) + len(kcp.snd_queue)
}