[ Languages: [English](README.md), [Español](README-es.md), [한국어](README-ko.md), [Português](README-pt.md), [Русский](README-ru.md), [Slovenščina](README-sl.md), [中文](README-zh.md) ] # The Art of Command Line [![Join the chat at https://gitter.im/jlevy/the-art-of-command-line](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/jlevy/the-art-of-command-line?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) - [Meta](#meta) - [Basics](#basics) - [Everyday use](#everyday-use) - [Processing files and data](#processing-files-and-data) - [System debugging](#system-debugging) - [One-liners](#one-liners) - [Obscure but useful](#obscure-but-useful) - [MacOS only](#macos-only) - [More resources](#more-resources) - [Disclaimer](#disclaimer) ![curl -s 'https://raw.githubusercontent.com/jlevy/the-art-of-command-line/master/README.md' | egrep -o '`\w+`' | tr -d '`' | cowsay -W50](cowsay.png) Fluency on the command line is a skill often neglected or considered arcane, but it improves your flexibility and productivity as an engineer in both obvious and subtle ways. This is a selection of notes and tips on using the command-line that I've found useful when working on Linux. Some tips are elementary, and some are fairly specific, sophisticated, or obscure. This page is not long, but if you can use and recall all the items here, you know a lot. Much of this [originally](http://www.quora.com/What-are-some-lesser-known-but-useful-Unix-commands) [appeared](http://www.quora.com/What-are-the-most-useful-Swiss-army-knife-one-liners-on-Unix) on [Quora](http://www.quora.com/What-are-some-time-saving-tips-that-every-Linux-user-should-know), but given the interest there, it seems it's worth using Github, where people more talented than I can readily suggest improvements. If you see an error or something that could be better, please submit an issue or PR! (Of course please review the meta section and existing PRs/issues first.) ## Meta Scope: - This guide is both for beginners and the experienced. The goals are *breadth* (everything important), *specificity* (give concrete examples of the most common case), and *brevity* (avoid things that aren't essential or digressions you can easily look up elsewhere). Every tip is essential in some situation or significantly saves time over alternatives. - This is written for Linux, with the exception of the "[MacOS only](#macos-only)" section. Many of the other items apply or can be installed on other Unices or MacOS (or even Cygwin). - The focus is on interactive Bash, though many tips apply to other shells and to general Bash scripting. - It includes both "standard" Unix commands as well as ones that require special package installs -- so long as they are important enough to merit inclusion. Notes: - To keep this to one page, content is implicitly included by reference. You're smart enough to look up more detail elsewhere once you know the idea or command to Google. Use `apt-get`/`yum`/`dnf`/`pacman`/`pip`/`brew` (as appropriate) to install new programs. - Use [Explainshell](http://explainshell.com/) to get a helpful breakdown of what commands, options, pipes etc. do. ## Basics - Learn basic Bash. Actually, type `man bash` and at least skim the whole thing; it's pretty easy to follow and not that long. Alternate shells can be nice, but Bash is powerful and always available (learning *only* zsh, fish, etc., while tempting on your own laptop, restricts you in many situations, such as using existing servers). - Learn at least one text-based editor well. Ideally Vim (`vi`), as there's really no competition for random editing in a terminal (even if you use Emacs, a big IDE, or a modern hipster editor most of the time). - Know how to read documentation with `man` (for the inquisitive, `man man` lists the section numbers, e.g. 1 is "regular" commands, 5 is files/conventions, and 8 are for administration). Find man pages with `apropos`. Know that some commands are not executables, but Bash builtins, and that you can get help on them with `help` and `help -d`. - Learn about redirection of output and input using `>` and `<` and pipes using `|`. Know `>` overwrites the output file and `>>` appends. Learn about stdout and stderr. - Learn about file glob expansion with `*` (and perhaps `?` and `{`...`}`) and quoting and the difference between double `"` and single `'` quotes. (See more on variable expansion below.) - Be familiar with Bash job management: `&`, **ctrl-z**, **ctrl-c**, `jobs`, `fg`, `bg`, `kill`, etc. - Know `ssh`, and the basics of passwordless authentication, via `ssh-agent`, `ssh-add`, etc. - Basic file management: `ls` and `ls -l` (in particular, learn what every column in `ls -l` means), `less`, `head`, `tail` and `tail -f` (or even better, `less +F`), `ln` and `ln -s` (learn the differences and advantages of hard versus soft links), `chown`, `chmod`, `du` (for a quick summary of disk usage: `du -hs *`). For filesystem management, `df`, `mount`, `fdisk`, `mkfs`, `lsblk`. - Basic network management: `ip` or `ifconfig`, `dig`. - Know regular expressions well, and the various flags to `grep`/`egrep`. The `-i`, `-o`, `-A`, and `-B` options are worth knowing. - Learn to use `apt-get`, `yum`, `dnf` or `pacman` (depending on distro) to find and install packages. And make sure you have `pip` to install Python-based command-line tools (a few below are easiest to install via `pip`). ## Everyday use - In Bash, use **Tab** to complete arguments and **ctrl-r** to search through command history. - In Bash, use **ctrl-w** to delete the last word, and **ctrl-u** to delete all the way back to the start of the line. Use **alt-b** and **alt-f** to move by word, **ctrl-a** to move cursor to beginning of line, **ctrl-e** to move cursor to end of line, **ctrl-k** to kill to the end of the line, **ctrl-l** to clear the screen. See `man readline` for all the default keybindings in Bash. There are a lot. For example **alt-.** cycles through previous arguments, and **alt-*** expands a glob. - Alternatively, if you love vi-style key-bindings, use `set -o vi`. - To see recent commands, `history`. There are also many abbreviations such as `!$` (last argument) and `!!` last command, though these are often easily replaced with **ctrl-r** and **alt-.**. - To go back to the previous working directory: `cd -` - If you are halfway through typing a command but change your mind, hit **alt-#** to add a `#` at the beginning and enter it as a comment (or use **ctrl-a**, **#**, **enter**). You can then return to it later via command history. - Use `xargs` (or `parallel`). It's very powerful. Note you can control how many items execute per line (`-L`) as well as parallelism (`-P`). If you're not sure if it'll do the right thing, use `xargs echo` first. Also, `-I{}` is handy. Examples: ```bash find . -name '*.py' | xargs grep some_function cat hosts | xargs -I{} ssh root@{} hostname ``` - `pstree -p` is a helpful display of the process tree. - Use `pgrep` and `pkill` to find or signal processes by name (`-f` is helpful). - Know the various signals you can send processes. For example, to suspend a process, use `kill -STOP [pid]`. For the full list, see `man 7 signal` - Use `nohup` or `disown` if you want a background process to keep running forever. - Check what processes are listening via `netstat -lntp` or `ss -plat` (for TCP; add `-u` for UDP). - See also `lsof` for open sockets and files. - Use `alias` to create shortcuts for commonly used commands. For example, `alias ll='ls -latr'` creates a new alias `ll`. - In Bash scripts, use `set -x` for debugging output. Use strict modes whenever possible. Use `set -e` to abort on errors. Use `set -o pipefail` as well, to be strict about errors (though this topic is a bit subtle). For more involved scripts, also use `trap`. - In Bash scripts, subshells (written with parentheses) are convenient ways to group commands. A common example is to temporarily move to a different working directory, e.g. ```bash # do something in current dir (cd /some/other/dir && other-command) # continue in original dir ``` - In Bash, note there are lots of kinds of variable expansion. Checking a variable exists: `${name:?error message}`. For example, if a Bash script requires a single argument, just write `input_file=${1:?usage: $0 input_file}`. Arithmetic expansion: `i=$(( (i + 1) % 5 ))`. Sequences: `{1..10}`. Trimming of strings: `${var%suffix}` and `${var#prefix}`. For example if `var=foo.pdf`, then `echo ${var%.pdf}.txt` prints `foo.txt`. - The output of a command can be treated like a file via `<(some command)`. For example, compare local `/etc/hosts` with a remote one: ```sh diff /etc/hosts <(ssh somehost cat /etc/hosts) ``` - Know about "here documents" in Bash, as in `cat <logfile 2>&1`. Often, to ensure a command does not leave an open file handle to standard input, tying it to the terminal you are in, it is also good practice to add ` foo: rename 's/\.bak$//' *.bak # Full rename of filenames, directories, and contents foo -> bar: repren --full --preserve-case --from foo --to bar . ``` - Use `shuf` to shuffle or select random lines from a file. - Know `sort`'s options. For numbers, use `-n`, or `-h` for handling human-readable numbers (e.g. from `du -h`). Know how keys work (`-t` and `-k`). In particular, watch out that you need to write `-k1,1` to sort by only the first field; `-k1` means sort according to the whole line. Stable sort (`sort -s`) can be useful. For example, to sort first by field 2, then secondarily by field 1, you can use `sort -k1,1 | sort -s -k2,2`. - If you ever need to write a tab literal in a command line in Bash (e.g. for the -t argument to sort), press **ctrl-v** **[Tab]** or write `$'\t'` (the latter is better as you can copy/paste it). - The standard tools for patching source code are `diff` and `patch`. See also `diffstat` for summary statistics of a diff. Note `diff -r` works for entire directories. Use `diff -r tree1 tree2 | diffstat` for a summary of changes. - For binary files, use `hd` for simple hex dumps and `bvi` for binary editing. - Also for binary files, `strings` (plus `grep`, etc.) lets you find bits of text. - For binary diffs (delta compression), use `xdelta3`. - To convert text encodings, try `iconv`. Or `uconv` for more advanced use; it supports some advanced Unicode things. For example, this command lowercases and removes all accents (by expanding and dropping them): ```sh uconv -f utf-8 -t utf-8 -x '::Any-Lower; ::Any-NFD; [:Nonspacing Mark:] >; ::Any-NFC; ' < input.txt > output.txt ``` - To split files into pieces, see `split` (to split by size) and `csplit` (to split by a pattern). - Use `zless`, `zmore`, `zcat`, and `zgrep` to operate on compressed files. ## System debugging - For web debugging, `curl` and `curl -I` are handy, or their `wget` equivalents, or the more modern [`httpie`](https://github.com/jakubroztocil/httpie). - To know disk/cpu/network status, use `iostat`, `netstat`, `top` (or the better `htop`), and (especially) `dstat`. Good for getting a quick idea of what's happening on a system. - For a more in-depth system overview, use [`glances`](https://github.com/nicolargo/glances). It presents you with several system level statistics in one terminal window. Very helpful for quickly checking on various subsystems. - To know memory status, run and understand the output of `free` and `vmstat`. In particular, be aware the "cached" value is memory held by the Linux kernel as file cache, so effectively counts toward the "free" value. - Java system debugging is a different kettle of fish, but a simple trick on Oracle's and some other JVMs is that you can run `kill -3 ` and a full stack trace and heap summary (including generational garbage collection details, which can be highly informative) will be dumped to stderr/logs. The JDK's `jps`, `jstat`, `jstack`, `jmap` are useful. [SJK tools](https://github.com/aragozin/jvm-tools) are more advanced. - Use `mtr` as a better traceroute, to identify network issues. - For looking at why a disk is full, `ncdu` saves time over the usual commands like `du -sh *`. - To find which socket or process is using bandwidth, try `iftop` or `nethogs`. - The `ab` tool (comes with Apache) is helpful for quick-and-dirty checking of web server performance. For more complex load testing, try `siege`. - For more serious network debugging, `wireshark`, `tshark`, or `ngrep`. - Know about `strace` and `ltrace`. These can be helpful if a program is failing, hanging, or crashing, and you don't know why, or if you want to get a general idea of performance. Note the profiling option (`-c`), and the ability to attach to a running process (`-p`). - Know about `ldd` to check shared libraries etc. - Know how to connect to a running process with `gdb` and get its stack traces. - Use `/proc`. It's amazingly helpful sometimes when debugging live problems. Examples: `/proc/cpuinfo`, `/proc/xxx/cwd`, `/proc/xxx/exe`, `/proc/xxx/fd/`, `/proc/xxx/smaps`. - When debugging why something went wrong in the past, `sar` can be very helpful. It shows historic statistics on CPU, memory, network, etc. - For deeper systems and performance analyses, look at `stap` ([SystemTap](https://sourceware.org/systemtap/wiki)), [`perf`](http://en.wikipedia.org/wiki/Perf_(Linux)), and [`sysdig`](https://github.com/draios/sysdig). - Check what OS you're on with `uname` or `uname -a` (general Unix/kernel info) or `lsb_release -a` (Linux distro info). - Use `dmesg` whenever something's acting really funny (it could be hardware or driver issues). ## One-liners A few examples of piecing together commands: - It is remarkably helpful sometimes that you can do set intersection, union, and difference of text files via `sort`/`uniq`. Suppose `a` and `b` are text files that are already uniqued. This is fast, and works on files of arbitrary size, up to many gigabytes. (Sort is not limited by memory, though you may need to use the `-T` option if `/tmp` is on a small root partition.) See also the note about `LC_ALL` above and `sort`'s `-u` option (left out for clarity below). ```sh cat a b | sort | uniq > c # c is a union b cat a b | sort | uniq -d > c # c is a intersect b cat a b b | sort | uniq -u > c # c is set difference a - b ``` - Use `grep . *` to visually examine all contents of all files in a directory, e.g. for directories filled with config settings, like `/sys`, `/proc`, `/etc`. - Summing all numbers in the third column of a text file (this is probably 3X faster and 3X less code than equivalent Python): ```sh awk '{ x += $3 } END { print x }' myfile ``` - If want to see sizes/dates on a tree of files, this is like a recursive `ls -l` but is easier to read than `ls -lR`: ```sh find . -type f -ls ``` - Say you have a text file, like a web server log, and a certain value that appears on some lines, such as an `acct_id` parameter that is present in the URL. If you want a tally of how many requests for each `acct_id`: ```sh cat access.log | egrep -o 'acct_id=[0-9]+' | cut -d= -f2 | sort | uniq -c | sort -rn ``` - Run this function to get a random tip from this document (parses Markdown and extracts an item): ```sh function taocl() { curl -s https://raw.githubusercontent.com/jlevy/the-art-of-command-line/master/README.md | pandoc -f markdown -t html | xmlstarlet fo --html --dropdtd | xmlstarlet sel -t -v "(html/body/ul/li[count(p)>0])[$RANDOM mod last()+1]" | xmlstarlet unesc | fmt -80 } ``` ## Obscure but useful - `expr`: perform arithmetic or boolean operations or evaluate regular expressions - `m4`: simple macro processor - `yes`: print a string a lot - `cal`: nice calendar - `env`: run a command (useful in scripts) - `printenv`: print out environment variables (useful in debugging and scripts) - `look`: find English words (or lines in a file) beginning with a string - `cut`, `paste` and `join`: data manipulation - `fmt`: format text paragraphs - `pr`: format text into pages/columns - `fold`: wrap lines of text - `column`: format text into columns or tables - `expand` and `unexpand`: convert between tabs and spaces - `nl`: add line numbers - `seq`: print numbers - `bc`: calculator - `factor`: factor integers - [`gpg`](https://gnupg.org/): encrypt and sign files - `toe`: table of terminfo entries - `nc`: network debugging and data transfer - `socat`: socket relay and tcp port forwarder (similar to `netcat`) - [`slurm`](https://github.com/mattthias/slurm): network trafic visualization - `dd`: moving data between files or devices - `file`: identify type of a file - `tree`: display directories and subdirectories as a nesting tree; like `ls` but recursive - `stat`: file info - `tac`: print files in reverse - `shuf`: random selection of lines from a file - `comm`: compare sorted files line by line - `pv`: monitor the progress of data through a pipe - `hd` and `bvi`: dump or edit binary files - `strings`: extract text from binary files - `tr`: character translation or manipulation - `iconv` or `uconv`: conversion for text encodings - `split` and `csplit`: splitting files - `sponge`: read all input before writing it, useful for reading from then writing to the same file, e.g., `grep -v something some-file | sponge some-file` - `units`: unit conversions and calculations; converts furlongs per fortnight to twips per blink (see also `/usr/share/units/definitions.units`) - `7z`: high-ratio file compression - `ldd`: dynamic library info - `nm`: symbols from object files - `ab`: benchmarking web servers - `strace`: system call debugging - `mtr`: better traceroute for network debugging - `cssh`: visual concurrent shell - `rsync`: sync files and folders over SSH - `wireshark` and `tshark`: packet capture and network debugging - `ngrep`: grep for the network layer - `host` and `dig`: DNS lookups - `lsof`: process file descriptor and socket info - `dstat`: useful system stats - [`glances`](https://github.com/nicolargo/glances): high level, multi-subsystem overview - `iostat`: CPU and disk usage stats - `htop`: improved version of top - `last`: login history - `w`: who's logged on - `id`: user/group identity info - `sar`: historic system stats - `iftop` or `nethogs`: network utilization by socket or process - `ss`: socket statistics - `dmesg`: boot and system error messages - `hdparm`: SATA/ATA disk manipulation/performance - `lsb_release`: Linux distribution info - `lsblk`: list block devices: a tree view of your disks and disk paritions - `lshw`, `lscpu`, `lspci`, `lsusb`, `dmidecode`: hardware information, including CPU, BIOS, RAID, graphics, devices, etc. - `fortune`, `ddate`, and `sl`: um, well, it depends on whether you consider steam locomotives and Zippy quotations "useful" ## MacOS only These are items relevant *only* on MacOS. - Package management with `brew` (Homebrew) and/or `port` (MacPorts). These can be used to install on MacOS many of the above commands. - Copy output of any command to a desktop app with `pbcopy` and paste input from one with `pbpaste`. - To open a file with a desktop app, use `open` or `open -a /Applications/Whatever.app`. - Spotlight: Search files with `mdfind` and list metadata (such as photo EXIF info) with `mdls`. - Be aware MacOS is based on BSD Unix, and many commands (for example `ps`, `ls`, `tail`, `awk`, `sed`) have many subtle variations from Linux, which is largely influenced by System V-style Unix and GNU tools. You can often tell the difference by noting a man page has the heading "BSD General Commands Manual." In some cases GNU versions can be installed, too (such as `gawk` and `gsed` for GNU awk and sed). If writing cross-platform Bash scripts, avoid such commands (for example, consider Python or `perl`) or test carefully. ## More resources - [awesome-shell](https://github.com/alebcay/awesome-shell): A curated list of shell tools and resources. - [Strict mode](http://redsymbol.net/articles/unofficial-bash-strict-mode/) for writing better shell scripts. ## Disclaimer With the exception of very small tasks, code is written so others can read it. With power comes responsibility. The fact you *can* do something in Bash doesn't necessarily mean you should! ;) ## License [![Creative Commons License](https://i.creativecommons.org/l/by-sa/4.0/88x31.png)](http://creativecommons.org/licenses/by-sa/4.0/) This work is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/).