prometheus/tsdb/index/postings.go

1031 lines
27 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package index
import (
"container/heap"
"context"
"encoding/binary"
"fmt"
"maps"
"math"
"runtime"
"slices"
"sort"
"strings"
"sync"
"time"
"github.com/bboreham/go-loser"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/storage"
)
const exponentialSliceGrowthFactor = 2
var allPostingsKey = labels.Label{}
// AllPostingsKey returns the label key that is used to store the postings list of all existing IDs.
func AllPostingsKey() (name, value string) {
return allPostingsKey.Name, allPostingsKey.Value
}
// ensureOrderBatchSize is the max number of postings passed to a worker in a single batch in MemPostings.EnsureOrder().
const ensureOrderBatchSize = 1024
// ensureOrderBatchPool is a pool used to recycle batches passed to workers in MemPostings.EnsureOrder().
var ensureOrderBatchPool = sync.Pool{
New: func() interface{} {
x := make([][]storage.SeriesRef, 0, ensureOrderBatchSize)
return &x // Return pointer type as preferred by Pool.
},
}
// MemPostings holds postings list for series ID per label pair. They may be written
// to out of order.
// EnsureOrder() must be called once before any reads are done. This allows for quick
// unordered batch fills on startup.
type MemPostings struct {
mtx sync.RWMutex
// m holds the postings lists for each label-value pair, indexed first by label name, and then by label value.
//
// mtx must be held when interacting with m (the appropriate one for reading or writing).
// It is safe to retain a reference to a postings list after releasing the lock.
//
// BUG: There's currently a data race in addFor, which might modify the tail of the postings list:
// https://github.com/prometheus/prometheus/issues/15317
m map[string]map[string][]storage.SeriesRef
// lvs holds the label values for each label name.
// lvs[name] is essentially an unsorted append-only list of all keys in m[name]
// mtx must be held when interacting with lvs.
// Since it's append-only, it is safe to the label values slice after releasing the lock.
lvs map[string][]string
ordered bool
}
const defaultLabelNamesMapSize = 512
// NewMemPostings returns a memPostings that's ready for reads and writes.
func NewMemPostings() *MemPostings {
return &MemPostings{
m: make(map[string]map[string][]storage.SeriesRef, defaultLabelNamesMapSize),
lvs: make(map[string][]string, defaultLabelNamesMapSize),
ordered: true,
}
}
// NewUnorderedMemPostings returns a memPostings that is not safe to be read from
// until EnsureOrder() was called once.
func NewUnorderedMemPostings() *MemPostings {
return &MemPostings{
m: make(map[string]map[string][]storage.SeriesRef, defaultLabelNamesMapSize),
lvs: make(map[string][]string, defaultLabelNamesMapSize),
ordered: false,
}
}
// Symbols returns an iterator over all unique name and value strings, in order.
func (p *MemPostings) Symbols() StringIter {
p.mtx.RLock()
// Make a quick clone of the map to avoid holding the lock while iterating.
// It's safe to use the values of the map after releasing the lock, as they're append-only slices.
lvs := maps.Clone(p.lvs)
p.mtx.RUnlock()
// Add all the strings to a map to de-duplicate.
symbols := make(map[string]struct{}, defaultLabelNamesMapSize)
for n, labelValues := range lvs {
symbols[n] = struct{}{}
for _, v := range labelValues {
symbols[v] = struct{}{}
}
}
res := make([]string, 0, len(symbols))
for k := range symbols {
res = append(res, k)
}
slices.Sort(res)
return NewStringListIter(res)
}
// SortedKeys returns a list of sorted label keys of the postings.
func (p *MemPostings) SortedKeys() []labels.Label {
p.mtx.RLock()
keys := make([]labels.Label, 0, len(p.m))
for n, e := range p.m {
for v := range e {
keys = append(keys, labels.Label{Name: n, Value: v})
}
}
p.mtx.RUnlock()
slices.SortFunc(keys, func(a, b labels.Label) int {
nameCompare := strings.Compare(a.Name, b.Name)
// If names are the same, compare values.
if nameCompare != 0 {
return nameCompare
}
return strings.Compare(a.Value, b.Value)
})
return keys
}
// LabelNames returns all the unique label names.
func (p *MemPostings) LabelNames() []string {
p.mtx.RLock()
defer p.mtx.RUnlock()
n := len(p.m)
if n == 0 {
return nil
}
names := make([]string, 0, n-1)
for name := range p.m {
if name != allPostingsKey.Name {
names = append(names, name)
}
}
return names
}
// LabelValues returns label values for the given name.
func (p *MemPostings) LabelValues(_ context.Context, name string) []string {
p.mtx.RLock()
values := p.lvs[name]
p.mtx.RUnlock()
// The slice from p.lvs[name] is shared between all readers, and it is append-only.
// Since it's shared, we need to make a copy of it before returning it to make
// sure that no caller modifies the original one by sorting it or filtering it.
// Since it's append-only, we can do this while not holding the mutex anymore.
return slices.Clone(values)
}
// PostingsStats contains cardinality based statistics for postings.
type PostingsStats struct {
CardinalityMetricsStats []Stat
CardinalityLabelStats []Stat
LabelValueStats []Stat
LabelValuePairsStats []Stat
NumLabelPairs int
}
// Stats calculates the cardinality statistics from postings.
func (p *MemPostings) Stats(label string, limit int) *PostingsStats {
var size uint64
p.mtx.RLock()
metrics := &maxHeap{}
labels := &maxHeap{}
labelValueLength := &maxHeap{}
labelValuePairs := &maxHeap{}
numLabelPairs := 0
metrics.init(limit)
labels.init(limit)
labelValueLength.init(limit)
labelValuePairs.init(limit)
for n, e := range p.m {
if n == "" {
continue
}
labels.push(Stat{Name: n, Count: uint64(len(e))})
numLabelPairs += len(e)
size = 0
for name, values := range e {
if n == label {
metrics.push(Stat{Name: name, Count: uint64(len(values))})
}
seriesCnt := uint64(len(values))
labelValuePairs.push(Stat{Name: n + "=" + name, Count: seriesCnt})
size += uint64(len(name)) * seriesCnt
}
labelValueLength.push(Stat{Name: n, Count: size})
}
p.mtx.RUnlock()
return &PostingsStats{
CardinalityMetricsStats: metrics.get(),
CardinalityLabelStats: labels.get(),
LabelValueStats: labelValueLength.get(),
LabelValuePairsStats: labelValuePairs.get(),
NumLabelPairs: numLabelPairs,
}
}
// Get returns a postings list for the given label pair.
func (p *MemPostings) Get(name, value string) Postings {
var lp []storage.SeriesRef
p.mtx.RLock()
l := p.m[name]
if l != nil {
lp = l[value]
}
p.mtx.RUnlock()
if lp == nil {
return EmptyPostings()
}
return newListPostings(lp...)
}
// All returns a postings list over all documents ever added.
func (p *MemPostings) All() Postings {
return p.Get(AllPostingsKey())
}
// EnsureOrder ensures that all postings lists are sorted. After it returns all further
// calls to add and addFor will insert new IDs in a sorted manner.
// Parameter numberOfConcurrentProcesses is used to specify the maximal number of
// CPU cores used for this operation. If it is <= 0, GOMAXPROCS is used.
// GOMAXPROCS was the default before introducing this parameter.
func (p *MemPostings) EnsureOrder(numberOfConcurrentProcesses int) {
p.mtx.Lock()
defer p.mtx.Unlock()
if p.ordered {
return
}
concurrency := numberOfConcurrentProcesses
if concurrency <= 0 {
concurrency = runtime.GOMAXPROCS(0)
}
workc := make(chan *[][]storage.SeriesRef)
var wg sync.WaitGroup
wg.Add(concurrency)
for i := 0; i < concurrency; i++ {
go func() {
for job := range workc {
for _, l := range *job {
slices.Sort(l)
}
*job = (*job)[:0]
ensureOrderBatchPool.Put(job)
}
wg.Done()
}()
}
nextJob := ensureOrderBatchPool.Get().(*[][]storage.SeriesRef)
for _, e := range p.m {
for _, l := range e {
*nextJob = append(*nextJob, l)
if len(*nextJob) >= ensureOrderBatchSize {
workc <- nextJob
nextJob = ensureOrderBatchPool.Get().(*[][]storage.SeriesRef)
}
}
}
// If the last job was partially filled, we need to push it to workers too.
if len(*nextJob) > 0 {
workc <- nextJob
}
close(workc)
wg.Wait()
p.ordered = true
}
// Delete removes all ids in the given map from the postings lists.
// affectedLabels contains all the labels that are affected by the deletion, there's no need to check other labels.
func (p *MemPostings) Delete(deleted map[storage.SeriesRef]struct{}, affected map[labels.Label]struct{}) {
p.mtx.Lock()
defer p.mtx.Unlock()
affectedLabelNames := map[string]struct{}{}
process := func(l labels.Label) {
orig := p.m[l.Name][l.Value]
repl := make([]storage.SeriesRef, 0, len(orig))
for _, id := range orig {
if _, ok := deleted[id]; !ok {
repl = append(repl, id)
}
}
if len(repl) > 0 {
p.m[l.Name][l.Value] = repl
} else {
delete(p.m[l.Name], l.Value)
affectedLabelNames[l.Name] = struct{}{}
}
}
i := 0
for l := range affected {
i++
process(l)
// From time to time we want some readers to go through and read their postings.
// It takes around 50ms to process a 1K series batch, and 120ms to process a 10K series batch (local benchmarks on an M3).
// Note that a read query will most likely want to read multiple postings lists, say 5, 10 or 20 (depending on the number of matchers)
// And that read query will most likely evaluate only one of those matchers before we unpause here, so we want to pause often.
if i%512 == 0 {
p.unlockWaitAndLockAgain()
}
}
process(allPostingsKey)
// Now we need to update the label values slices.
i = 0
for name := range affectedLabelNames {
i++
// From time to time we want some readers to go through and read their postings.
if i%512 == 0 {
p.unlockWaitAndLockAgain()
}
if len(p.m[name]) == 0 {
// Delete the label name key if we deleted all values.
delete(p.m, name)
delete(p.lvs, name)
continue
}
// Create the new slice with enough room to grow without reallocating.
// We have deleted values here, so there's definitely some churn, so be prepared for it.
lvs := make([]string, 0, exponentialSliceGrowthFactor*len(p.m[name]))
for v := range p.m[name] {
lvs = append(lvs, v)
}
p.lvs[name] = lvs
}
}
// unlockWaitAndLockAgain will unlock an already locked p.mtx.Lock() and then wait a little bit before locking it again,
// letting the RLock()-waiting goroutines to get the lock.
func (p *MemPostings) unlockWaitAndLockAgain() {
p.mtx.Unlock()
// While it's tempting to just do a `time.Sleep(time.Millisecond)` here,
// it wouldn't ensure use that readers actually were able to get the read lock,
// because if there are writes waiting on same mutex, readers won't be able to get it.
// So we just grab one RLock ourselves.
p.mtx.RLock()
// We shouldn't wait here, because we would be blocking a potential write for no reason.
// Note that if there's a writer waiting for us to unlock, no reader will be able to get the read lock.
p.mtx.RUnlock() //nolint:staticcheck // SA2001: this is an intentionally empty critical section.
// Now we can wait a little bit just to increase the chance of a reader getting the lock.
time.Sleep(time.Millisecond)
p.mtx.Lock()
}
// Iter calls f for each postings list. It aborts if f returns an error and returns it.
func (p *MemPostings) Iter(f func(labels.Label, Postings) error) error {
p.mtx.RLock()
defer p.mtx.RUnlock()
for n, e := range p.m {
for v, p := range e {
if err := f(labels.Label{Name: n, Value: v}, newListPostings(p...)); err != nil {
return err
}
}
}
return nil
}
// Add a label set to the postings index.
func (p *MemPostings) Add(id storage.SeriesRef, lset labels.Labels) {
p.mtx.Lock()
lset.Range(func(l labels.Label) {
p.addFor(id, l)
})
p.addFor(id, allPostingsKey)
p.mtx.Unlock()
}
func appendWithExponentialGrowth[T any](a []T, v T) []T {
if cap(a) < len(a)+1 {
newList := make([]T, len(a), len(a)*exponentialSliceGrowthFactor+1)
copy(newList, a)
a = newList
}
return append(a, v)
}
func (p *MemPostings) addFor(id storage.SeriesRef, l labels.Label) {
nm, ok := p.m[l.Name]
if !ok {
nm = map[string][]storage.SeriesRef{}
p.m[l.Name] = nm
}
vm, ok := nm[l.Value]
if !ok {
p.lvs[l.Name] = appendWithExponentialGrowth(p.lvs[l.Name], l.Value)
}
list := appendWithExponentialGrowth(vm, id)
nm[l.Value] = list
if !p.ordered {
return
}
// There is no guarantee that no higher ID was inserted before as they may
// be generated independently before adding them to postings.
// We repair order violations on insert. The invariant is that the first n-1
// items in the list are already sorted.
for i := len(list) - 1; i >= 1; i-- {
if list[i] >= list[i-1] {
break
}
list[i], list[i-1] = list[i-1], list[i]
}
}
func (p *MemPostings) PostingsForLabelMatching(ctx context.Context, name string, match func(string) bool) Postings {
// We'll take the label values slice and then match over that,
// this way we don't need to hold the mutex while we're matching,
// which can be slow (seconds) if the match function is a huge regex.
// Holding this lock prevents new series from being added (slows down the write path)
// and blocks the compaction process.
//
// We just need to make sure we don't modify the slice we took,
// so we'll append matching values to a different one.
p.mtx.RLock()
readOnlyLabelValues := p.lvs[name]
p.mtx.RUnlock()
vals := make([]string, 0, len(readOnlyLabelValues))
for i, v := range readOnlyLabelValues {
if i%checkContextEveryNIterations == 0 && ctx.Err() != nil {
return ErrPostings(ctx.Err())
}
if match(v) {
vals = append(vals, v)
}
}
// If none matched (or this label had no values), no need to grab the lock again.
if len(vals) == 0 {
return EmptyPostings()
}
// Now `vals` only contains the values that matched, get their postings.
its := make([]Postings, 0, len(vals))
lps := make([]ListPostings, len(vals))
p.mtx.RLock()
e := p.m[name]
for i, v := range vals {
if refs, ok := e[v]; ok {
// Some of the values may have been garbage-collected in the meantime this is fine, we'll just skip them.
// If we didn't let the mutex go, we'd have these postings here, but they would be pointing nowhere
// because there would be a `MemPostings.Delete()` call waiting for the lock to delete these labels,
// because the series were deleted already.
lps[i] = ListPostings{list: refs}
its = append(its, &lps[i])
}
}
// Let the mutex go before merging.
p.mtx.RUnlock()
return Merge(ctx, its...)
}
func (p *MemPostings) PostingsForAllLabelValues(ctx context.Context, name string) Postings {
p.mtx.RLock()
e := p.m[name]
its := make([]Postings, 0, len(e))
lps := make([]ListPostings, len(e))
i := 0
for _, refs := range e {
if len(refs) > 0 {
lps[i] = ListPostings{list: refs}
its = append(its, &lps[i])
}
i++
}
// Let the mutex go before merging.
p.mtx.RUnlock()
return Merge(ctx, its...)
}
// ExpandPostings returns the postings expanded as a slice.
func ExpandPostings(p Postings) (res []storage.SeriesRef, err error) {
for p.Next() {
res = append(res, p.At())
}
return res, p.Err()
}
// Postings provides iterative access over a postings list.
type Postings interface {
// Next advances the iterator and returns true if another value was found.
Next() bool
// Seek advances the iterator to value v or greater and returns
// true if a value was found.
Seek(v storage.SeriesRef) bool
// At returns the value at the current iterator position.
// At should only be called after a successful call to Next or Seek.
At() storage.SeriesRef
// Err returns the last error of the iterator.
Err() error
}
// errPostings is an empty iterator that always errors.
type errPostings struct {
err error
}
func (e errPostings) Next() bool { return false }
func (e errPostings) Seek(storage.SeriesRef) bool { return false }
func (e errPostings) At() storage.SeriesRef { return 0 }
func (e errPostings) Err() error { return e.err }
var emptyPostings = errPostings{}
// EmptyPostings returns a postings list that's always empty.
// NOTE: Returning EmptyPostings sentinel when Postings struct has no postings is recommended.
// It triggers optimized flow in other functions like Intersect, Without etc.
func EmptyPostings() Postings {
return emptyPostings
}
// IsEmptyPostingsType returns true if the postings are an empty postings list.
// When this function returns false, it doesn't mean that the postings isn't empty
// (it could be an empty intersection of two non-empty postings, for example).
func IsEmptyPostingsType(p Postings) bool {
return p == emptyPostings
}
// ErrPostings returns new postings that immediately error.
func ErrPostings(err error) Postings {
return errPostings{err}
}
// Intersect returns a new postings list over the intersection of the
// input postings.
func Intersect(its ...Postings) Postings {
if len(its) == 0 {
return EmptyPostings()
}
if len(its) == 1 {
return its[0]
}
for _, p := range its {
if p == EmptyPostings() {
return EmptyPostings()
}
}
return newIntersectPostings(its...)
}
type intersectPostings struct {
arr []Postings
cur storage.SeriesRef
}
func newIntersectPostings(its ...Postings) *intersectPostings {
return &intersectPostings{arr: its}
}
func (it *intersectPostings) At() storage.SeriesRef {
return it.cur
}
func (it *intersectPostings) doNext() bool {
Loop:
for {
for _, p := range it.arr {
if !p.Seek(it.cur) {
return false
}
if p.At() > it.cur {
it.cur = p.At()
continue Loop
}
}
return true
}
}
func (it *intersectPostings) Next() bool {
for _, p := range it.arr {
if !p.Next() {
return false
}
if p.At() > it.cur {
it.cur = p.At()
}
}
return it.doNext()
}
func (it *intersectPostings) Seek(id storage.SeriesRef) bool {
it.cur = id
return it.doNext()
}
func (it *intersectPostings) Err() error {
for _, p := range it.arr {
if p.Err() != nil {
return p.Err()
}
}
return nil
}
// Merge returns a new iterator over the union of the input iterators.
func Merge(_ context.Context, its ...Postings) Postings {
if len(its) == 0 {
return EmptyPostings()
}
if len(its) == 1 {
return its[0]
}
p, ok := newMergedPostings(its)
if !ok {
return EmptyPostings()
}
return p
}
type mergedPostings struct {
p []Postings
h *loser.Tree[storage.SeriesRef, Postings]
cur storage.SeriesRef
}
func newMergedPostings(p []Postings) (m *mergedPostings, nonEmpty bool) {
const maxVal = storage.SeriesRef(math.MaxUint64) // This value must be higher than all real values used in the tree.
lt := loser.New(p, maxVal)
return &mergedPostings{p: p, h: lt}, true
}
func (it *mergedPostings) Next() bool {
for {
if !it.h.Next() {
return false
}
// Remove duplicate entries.
newItem := it.h.At()
if newItem != it.cur {
it.cur = newItem
return true
}
}
}
func (it *mergedPostings) Seek(id storage.SeriesRef) bool {
for !it.h.IsEmpty() && it.h.At() < id {
finished := !it.h.Winner().Seek(id)
it.h.Fix(finished)
}
if it.h.IsEmpty() {
return false
}
it.cur = it.h.At()
return true
}
func (it mergedPostings) At() storage.SeriesRef {
return it.cur
}
func (it mergedPostings) Err() error {
for _, p := range it.p {
if err := p.Err(); err != nil {
return err
}
}
return nil
}
// Without returns a new postings list that contains all elements from the full list that
// are not in the drop list.
func Without(full, drop Postings) Postings {
if full == EmptyPostings() {
return EmptyPostings()
}
if drop == EmptyPostings() {
return full
}
return newRemovedPostings(full, drop)
}
type removedPostings struct {
full, remove Postings
cur storage.SeriesRef
initialized bool
fok, rok bool
}
func newRemovedPostings(full, remove Postings) *removedPostings {
return &removedPostings{
full: full,
remove: remove,
}
}
func (rp *removedPostings) At() storage.SeriesRef {
return rp.cur
}
func (rp *removedPostings) Next() bool {
if !rp.initialized {
rp.fok = rp.full.Next()
rp.rok = rp.remove.Next()
rp.initialized = true
}
for {
if !rp.fok {
return false
}
if !rp.rok {
rp.cur = rp.full.At()
rp.fok = rp.full.Next()
return true
}
switch fcur, rcur := rp.full.At(), rp.remove.At(); {
case fcur < rcur:
rp.cur = fcur
rp.fok = rp.full.Next()
return true
case rcur < fcur:
// Forward the remove postings to the right position.
rp.rok = rp.remove.Seek(fcur)
default:
// Skip the current posting.
rp.fok = rp.full.Next()
}
}
}
func (rp *removedPostings) Seek(id storage.SeriesRef) bool {
if rp.cur >= id {
return true
}
rp.fok = rp.full.Seek(id)
rp.rok = rp.remove.Seek(id)
rp.initialized = true
return rp.Next()
}
func (rp *removedPostings) Err() error {
if rp.full.Err() != nil {
return rp.full.Err()
}
return rp.remove.Err()
}
// ListPostings implements the Postings interface over a plain list.
type ListPostings struct {
list []storage.SeriesRef
cur storage.SeriesRef
}
func NewListPostings(list []storage.SeriesRef) Postings {
return newListPostings(list...)
}
func newListPostings(list ...storage.SeriesRef) *ListPostings {
return &ListPostings{list: list}
}
func (it *ListPostings) At() storage.SeriesRef {
return it.cur
}
func (it *ListPostings) Next() bool {
if len(it.list) > 0 {
it.cur = it.list[0]
it.list = it.list[1:]
return true
}
it.cur = 0
return false
}
func (it *ListPostings) Seek(x storage.SeriesRef) bool {
// If the current value satisfies, then return.
if it.cur >= x {
return true
}
if len(it.list) == 0 {
return false
}
// Do binary search between current position and end.
i, _ := slices.BinarySearch(it.list, x)
if i < len(it.list) {
it.cur = it.list[i]
it.list = it.list[i+1:]
return true
}
it.list = nil
return false
}
func (it *ListPostings) Err() error {
return nil
}
// bigEndianPostings implements the Postings interface over a byte stream of
// big endian numbers.
type bigEndianPostings struct {
list []byte
cur uint32
}
func newBigEndianPostings(list []byte) *bigEndianPostings {
return &bigEndianPostings{list: list}
}
func (it *bigEndianPostings) At() storage.SeriesRef {
return storage.SeriesRef(it.cur)
}
func (it *bigEndianPostings) Next() bool {
if len(it.list) >= 4 {
it.cur = binary.BigEndian.Uint32(it.list)
it.list = it.list[4:]
return true
}
return false
}
func (it *bigEndianPostings) Seek(x storage.SeriesRef) bool {
if storage.SeriesRef(it.cur) >= x {
return true
}
num := len(it.list) / 4
// Do binary search between current position and end.
i := sort.Search(num, func(i int) bool {
return binary.BigEndian.Uint32(it.list[i*4:]) >= uint32(x)
})
if i < num {
j := i * 4
it.cur = binary.BigEndian.Uint32(it.list[j:])
it.list = it.list[j+4:]
return true
}
it.list = nil
return false
}
func (it *bigEndianPostings) Err() error {
return nil
}
// FindIntersectingPostings checks the intersection of p and candidates[i] for each i in candidates,
// if intersection is non empty, then i is added to the indexes returned.
// Returned indexes are not sorted.
func FindIntersectingPostings(p Postings, candidates []Postings) (indexes []int, err error) {
h := make(postingsWithIndexHeap, 0, len(candidates))
for idx, it := range candidates {
switch {
case it.Next():
h = append(h, postingsWithIndex{index: idx, p: it})
case it.Err() != nil:
return nil, it.Err()
}
}
if h.empty() {
return nil, nil
}
heap.Init(&h)
for !h.empty() {
if !p.Seek(h.at()) {
return indexes, p.Err()
}
if p.At() == h.at() {
indexes = append(indexes, h.popIndex())
} else if err := h.next(); err != nil {
return nil, err
}
}
return indexes, nil
}
// postingsWithIndex is used as postingsWithIndexHeap elements by FindIntersectingPostings,
// keeping track of the original index of each postings while they move inside the heap.
type postingsWithIndex struct {
index int
p Postings
// popped means that these postings shouldn't be considered anymore.
// See popIndex() comment to understand why we need this.
popped bool
}
// postingsWithIndexHeap implements heap.Interface,
// with root always pointing to the postings with minimum Postings.At() value.
// It also implements a special way of removing elements that marks them as popped and moves them to the bottom of the
// heap instead of actually removing them, see popIndex() for more details.
type postingsWithIndexHeap []postingsWithIndex
// empty checks whether the heap is empty, which is true if it has no elements, of if the smallest element is popped.
func (h *postingsWithIndexHeap) empty() bool {
return len(*h) == 0 || (*h)[0].popped
}
// popIndex pops the smallest heap element and returns its index.
// In our implementation we don't actually do heap.Pop(), instead we mark the element as `popped` and fix its position, which
// should be after all the non-popped elements according to our sorting strategy.
// By skipping the `heap.Pop()` call we avoid an extra allocation in this heap's Pop() implementation which returns an interface{}.
func (h *postingsWithIndexHeap) popIndex() int {
index := (*h)[0].index
(*h)[0].popped = true
heap.Fix(h, 0)
return index
}
// at provides the storage.SeriesRef where root Postings is pointing at this moment.
func (h postingsWithIndexHeap) at() storage.SeriesRef { return h[0].p.At() }
// next performs the Postings.Next() operation on the root of the heap, performing the related operation on the heap
// and conveniently returning the result of calling Postings.Err() if the result of calling Next() was false.
// If Next() succeeds, heap is fixed to move the root to its new position, according to its Postings.At() value.
// If Next() returns fails and there's no error reported by Postings.Err(), then root is marked as removed and heap is fixed.
func (h *postingsWithIndexHeap) next() error {
pi := (*h)[0]
next := pi.p.Next()
if next {
heap.Fix(h, 0)
return nil
}
if err := pi.p.Err(); err != nil {
return fmt.Errorf("postings %d: %w", pi.index, err)
}
h.popIndex()
return nil
}
// Len implements heap.Interface.
// Notice that Len() > 0 does not imply that heap is not empty as elements are not removed from this heap.
// Use empty() to check whether heap is empty or not.
func (h postingsWithIndexHeap) Len() int { return len(h) }
// Less implements heap.Interface, it puts all the popped elements at the bottom,
// and then sorts by Postings.At() property of each node.
func (h postingsWithIndexHeap) Less(i, j int) bool {
if h[i].popped != h[j].popped {
return h[j].popped
}
return h[i].p.At() < h[j].p.At()
}
// Swap implements heap.Interface.
func (h *postingsWithIndexHeap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] }
// Push implements heap.Interface.
func (h *postingsWithIndexHeap) Push(x interface{}) {
*h = append(*h, x.(postingsWithIndex))
}
// Pop implements heap.Interface and pops the last element, which is NOT the min element,
// so this doesn't return the same heap.Pop()
// Although this method is implemented for correctness, we don't expect it to be used, see popIndex() method for details.
func (h *postingsWithIndexHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}