mirror of https://github.com/prometheus/prometheus
583 lines
19 KiB
Go
583 lines
19 KiB
Go
// Copyright 2024 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/95e8f8fdc2a9dc87230406c9a3cf02be4fd68bea/pkg/translator/prometheusremotewrite/helper.go
|
|
// Provenance-includes-license: Apache-2.0
|
|
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
|
|
|
|
package prometheusremotewrite
|
|
|
|
import (
|
|
"encoding/hex"
|
|
"fmt"
|
|
"log"
|
|
"math"
|
|
"slices"
|
|
"sort"
|
|
"strconv"
|
|
"time"
|
|
"unicode/utf8"
|
|
|
|
"github.com/cespare/xxhash/v2"
|
|
"github.com/prometheus/common/model"
|
|
"go.opentelemetry.io/collector/pdata/pcommon"
|
|
"go.opentelemetry.io/collector/pdata/pmetric"
|
|
conventions "go.opentelemetry.io/collector/semconv/v1.6.1"
|
|
|
|
"github.com/prometheus/prometheus/model/timestamp"
|
|
"github.com/prometheus/prometheus/model/value"
|
|
"github.com/prometheus/prometheus/prompb"
|
|
|
|
prometheustranslator "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheus"
|
|
)
|
|
|
|
const (
|
|
sumStr = "_sum"
|
|
countStr = "_count"
|
|
bucketStr = "_bucket"
|
|
leStr = "le"
|
|
quantileStr = "quantile"
|
|
pInfStr = "+Inf"
|
|
createdSuffix = "_created"
|
|
// maxExemplarRunes is the maximum number of UTF-8 exemplar characters
|
|
// according to the prometheus specification
|
|
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
|
|
maxExemplarRunes = 128
|
|
// Trace and Span id keys are defined as part of the spec:
|
|
// https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification%2Fmetrics%2Fdatamodel.md#exemplars-2
|
|
traceIDKey = "trace_id"
|
|
spanIDKey = "span_id"
|
|
infoType = "info"
|
|
targetMetricName = "target_info"
|
|
)
|
|
|
|
type bucketBoundsData struct {
|
|
ts *prompb.TimeSeries
|
|
bound float64
|
|
}
|
|
|
|
// byBucketBoundsData enables the usage of sort.Sort() with a slice of bucket bounds
|
|
type byBucketBoundsData []bucketBoundsData
|
|
|
|
func (m byBucketBoundsData) Len() int { return len(m) }
|
|
func (m byBucketBoundsData) Less(i, j int) bool { return m[i].bound < m[j].bound }
|
|
func (m byBucketBoundsData) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
|
|
|
|
// ByLabelName enables the usage of sort.Sort() with a slice of labels
|
|
type ByLabelName []prompb.Label
|
|
|
|
func (a ByLabelName) Len() int { return len(a) }
|
|
func (a ByLabelName) Less(i, j int) bool { return a[i].Name < a[j].Name }
|
|
func (a ByLabelName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
|
|
// timeSeriesSignature returns a hashed label set signature.
|
|
// The label slice should not contain duplicate label names; this method sorts the slice by label name before creating
|
|
// the signature.
|
|
// The algorithm is the same as in Prometheus' labels.StableHash function.
|
|
func timeSeriesSignature(labels []prompb.Label) uint64 {
|
|
sort.Sort(ByLabelName(labels))
|
|
|
|
// Use xxhash.Sum64(b) for fast path as it's faster.
|
|
b := make([]byte, 0, 1024)
|
|
for i, v := range labels {
|
|
if len(b)+len(v.Name)+len(v.Value)+2 >= cap(b) {
|
|
// If labels entry is 1KB+ do not allocate whole entry.
|
|
h := xxhash.New()
|
|
_, _ = h.Write(b)
|
|
for _, v := range labels[i:] {
|
|
_, _ = h.WriteString(v.Name)
|
|
_, _ = h.Write(seps)
|
|
_, _ = h.WriteString(v.Value)
|
|
_, _ = h.Write(seps)
|
|
}
|
|
return h.Sum64()
|
|
}
|
|
|
|
b = append(b, v.Name...)
|
|
b = append(b, seps[0])
|
|
b = append(b, v.Value...)
|
|
b = append(b, seps[0])
|
|
}
|
|
return xxhash.Sum64(b)
|
|
}
|
|
|
|
var seps = []byte{'\xff'}
|
|
|
|
// createAttributes creates a slice of Prometheus Labels with OTLP attributes and pairs of string values.
|
|
// Unpaired string values are ignored. String pairs overwrite OTLP labels if collisions happen and
|
|
// if logOnOverwrite is true, the overwrite is logged. Resulting label names are sanitized.
|
|
func createAttributes(resource pcommon.Resource, attributes pcommon.Map, externalLabels map[string]string,
|
|
ignoreAttrs []string, logOnOverwrite bool, extras ...string) []prompb.Label {
|
|
resourceAttrs := resource.Attributes()
|
|
serviceName, haveServiceName := resourceAttrs.Get(conventions.AttributeServiceName)
|
|
instance, haveInstanceID := resourceAttrs.Get(conventions.AttributeServiceInstanceID)
|
|
|
|
// Calculate the maximum possible number of labels we could return so we can preallocate l
|
|
maxLabelCount := attributes.Len() + len(externalLabels) + len(extras)/2
|
|
|
|
if haveServiceName {
|
|
maxLabelCount++
|
|
}
|
|
|
|
if haveInstanceID {
|
|
maxLabelCount++
|
|
}
|
|
|
|
// map ensures no duplicate label name
|
|
l := make(map[string]string, maxLabelCount)
|
|
|
|
// Ensure attributes are sorted by key for consistent merging of keys which
|
|
// collide when sanitized.
|
|
labels := make([]prompb.Label, 0, maxLabelCount)
|
|
// XXX: Should we always drop service namespace/service name/service instance ID from the labels
|
|
// (as they get mapped to other Prometheus labels)?
|
|
attributes.Range(func(key string, value pcommon.Value) bool {
|
|
if !slices.Contains(ignoreAttrs, key) {
|
|
labels = append(labels, prompb.Label{Name: key, Value: value.AsString()})
|
|
}
|
|
return true
|
|
})
|
|
sort.Stable(ByLabelName(labels))
|
|
|
|
for _, label := range labels {
|
|
var finalKey = prometheustranslator.NormalizeLabel(label.Name)
|
|
if existingValue, alreadyExists := l[finalKey]; alreadyExists {
|
|
l[finalKey] = existingValue + ";" + label.Value
|
|
} else {
|
|
l[finalKey] = label.Value
|
|
}
|
|
}
|
|
|
|
// Map service.name + service.namespace to job
|
|
if haveServiceName {
|
|
val := serviceName.AsString()
|
|
if serviceNamespace, ok := resourceAttrs.Get(conventions.AttributeServiceNamespace); ok {
|
|
val = fmt.Sprintf("%s/%s", serviceNamespace.AsString(), val)
|
|
}
|
|
l[model.JobLabel] = val
|
|
}
|
|
// Map service.instance.id to instance
|
|
if haveInstanceID {
|
|
l[model.InstanceLabel] = instance.AsString()
|
|
}
|
|
for key, value := range externalLabels {
|
|
// External labels have already been sanitized
|
|
if _, alreadyExists := l[key]; alreadyExists {
|
|
// Skip external labels if they are overridden by metric attributes
|
|
continue
|
|
}
|
|
l[key] = value
|
|
}
|
|
|
|
for i := 0; i < len(extras); i += 2 {
|
|
if i+1 >= len(extras) {
|
|
break
|
|
}
|
|
|
|
name := extras[i]
|
|
_, found := l[name]
|
|
if found && logOnOverwrite {
|
|
log.Println("label " + name + " is overwritten. Check if Prometheus reserved labels are used.")
|
|
}
|
|
// internal labels should be maintained
|
|
if !(len(name) > 4 && name[:2] == "__" && name[len(name)-2:] == "__") {
|
|
name = prometheustranslator.NormalizeLabel(name)
|
|
}
|
|
l[name] = extras[i+1]
|
|
}
|
|
|
|
labels = labels[:0]
|
|
for k, v := range l {
|
|
labels = append(labels, prompb.Label{Name: k, Value: v})
|
|
}
|
|
|
|
return labels
|
|
}
|
|
|
|
// isValidAggregationTemporality checks whether an OTel metric has a valid
|
|
// aggregation temporality for conversion to a Prometheus metric.
|
|
func isValidAggregationTemporality(metric pmetric.Metric) bool {
|
|
//exhaustive:enforce
|
|
switch metric.Type() {
|
|
case pmetric.MetricTypeGauge, pmetric.MetricTypeSummary:
|
|
return true
|
|
case pmetric.MetricTypeSum:
|
|
return metric.Sum().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
|
|
case pmetric.MetricTypeHistogram:
|
|
return metric.Histogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
|
|
case pmetric.MetricTypeExponentialHistogram:
|
|
return metric.ExponentialHistogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
|
|
}
|
|
return false
|
|
}
|
|
|
|
// addHistogramDataPoints adds OTel histogram data points to the corresponding Prometheus time series
|
|
// as classical histogram samples.
|
|
//
|
|
// Note that we can't convert to native histograms, since these have exponential buckets and don't line up
|
|
// with the user defined bucket boundaries of non-exponential OTel histograms.
|
|
// However, work is under way to resolve this shortcoming through a feature called native histograms custom buckets:
|
|
// https://github.com/prometheus/prometheus/issues/13485.
|
|
func (c *PrometheusConverter) addHistogramDataPoints(dataPoints pmetric.HistogramDataPointSlice,
|
|
resource pcommon.Resource, settings Settings, baseName string) {
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
pt := dataPoints.At(x)
|
|
timestamp := convertTimeStamp(pt.Timestamp())
|
|
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels, nil, false)
|
|
|
|
// If the sum is unset, it indicates the _sum metric point should be
|
|
// omitted
|
|
if pt.HasSum() {
|
|
// treat sum as a sample in an individual TimeSeries
|
|
sum := &prompb.Sample{
|
|
Value: pt.Sum(),
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
sum.Value = math.Float64frombits(value.StaleNaN)
|
|
}
|
|
|
|
sumlabels := createLabels(baseName+sumStr, baseLabels)
|
|
c.addSample(sum, sumlabels)
|
|
|
|
}
|
|
|
|
// treat count as a sample in an individual TimeSeries
|
|
count := &prompb.Sample{
|
|
Value: float64(pt.Count()),
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
count.Value = math.Float64frombits(value.StaleNaN)
|
|
}
|
|
|
|
countlabels := createLabels(baseName+countStr, baseLabels)
|
|
c.addSample(count, countlabels)
|
|
|
|
// cumulative count for conversion to cumulative histogram
|
|
var cumulativeCount uint64
|
|
|
|
var bucketBounds []bucketBoundsData
|
|
|
|
// process each bound, based on histograms proto definition, # of buckets = # of explicit bounds + 1
|
|
for i := 0; i < pt.ExplicitBounds().Len() && i < pt.BucketCounts().Len(); i++ {
|
|
bound := pt.ExplicitBounds().At(i)
|
|
cumulativeCount += pt.BucketCounts().At(i)
|
|
bucket := &prompb.Sample{
|
|
Value: float64(cumulativeCount),
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
bucket.Value = math.Float64frombits(value.StaleNaN)
|
|
}
|
|
boundStr := strconv.FormatFloat(bound, 'f', -1, 64)
|
|
labels := createLabels(baseName+bucketStr, baseLabels, leStr, boundStr)
|
|
ts := c.addSample(bucket, labels)
|
|
|
|
bucketBounds = append(bucketBounds, bucketBoundsData{ts: ts, bound: bound})
|
|
}
|
|
// add le=+Inf bucket
|
|
infBucket := &prompb.Sample{
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
infBucket.Value = math.Float64frombits(value.StaleNaN)
|
|
} else {
|
|
infBucket.Value = float64(pt.Count())
|
|
}
|
|
infLabels := createLabels(baseName+bucketStr, baseLabels, leStr, pInfStr)
|
|
ts := c.addSample(infBucket, infLabels)
|
|
|
|
bucketBounds = append(bucketBounds, bucketBoundsData{ts: ts, bound: math.Inf(1)})
|
|
c.addExemplars(pt, bucketBounds)
|
|
|
|
startTimestamp := pt.StartTimestamp()
|
|
if settings.ExportCreatedMetric && startTimestamp != 0 {
|
|
labels := createLabels(baseName+createdSuffix, baseLabels)
|
|
c.addTimeSeriesIfNeeded(labels, startTimestamp, pt.Timestamp())
|
|
}
|
|
}
|
|
}
|
|
|
|
type exemplarType interface {
|
|
pmetric.ExponentialHistogramDataPoint | pmetric.HistogramDataPoint | pmetric.NumberDataPoint
|
|
Exemplars() pmetric.ExemplarSlice
|
|
}
|
|
|
|
func getPromExemplars[T exemplarType](pt T) []prompb.Exemplar {
|
|
promExemplars := make([]prompb.Exemplar, 0, pt.Exemplars().Len())
|
|
for i := 0; i < pt.Exemplars().Len(); i++ {
|
|
exemplar := pt.Exemplars().At(i)
|
|
exemplarRunes := 0
|
|
|
|
promExemplar := prompb.Exemplar{
|
|
Value: exemplar.DoubleValue(),
|
|
Timestamp: timestamp.FromTime(exemplar.Timestamp().AsTime()),
|
|
}
|
|
if traceID := exemplar.TraceID(); !traceID.IsEmpty() {
|
|
val := hex.EncodeToString(traceID[:])
|
|
exemplarRunes += utf8.RuneCountInString(traceIDKey) + utf8.RuneCountInString(val)
|
|
promLabel := prompb.Label{
|
|
Name: traceIDKey,
|
|
Value: val,
|
|
}
|
|
promExemplar.Labels = append(promExemplar.Labels, promLabel)
|
|
}
|
|
if spanID := exemplar.SpanID(); !spanID.IsEmpty() {
|
|
val := hex.EncodeToString(spanID[:])
|
|
exemplarRunes += utf8.RuneCountInString(spanIDKey) + utf8.RuneCountInString(val)
|
|
promLabel := prompb.Label{
|
|
Name: spanIDKey,
|
|
Value: val,
|
|
}
|
|
promExemplar.Labels = append(promExemplar.Labels, promLabel)
|
|
}
|
|
|
|
attrs := exemplar.FilteredAttributes()
|
|
labelsFromAttributes := make([]prompb.Label, 0, attrs.Len())
|
|
attrs.Range(func(key string, value pcommon.Value) bool {
|
|
val := value.AsString()
|
|
exemplarRunes += utf8.RuneCountInString(key) + utf8.RuneCountInString(val)
|
|
promLabel := prompb.Label{
|
|
Name: key,
|
|
Value: val,
|
|
}
|
|
|
|
labelsFromAttributes = append(labelsFromAttributes, promLabel)
|
|
|
|
return true
|
|
})
|
|
if exemplarRunes <= maxExemplarRunes {
|
|
// only append filtered attributes if it does not cause exemplar
|
|
// labels to exceed the max number of runes
|
|
promExemplar.Labels = append(promExemplar.Labels, labelsFromAttributes...)
|
|
}
|
|
|
|
promExemplars = append(promExemplars, promExemplar)
|
|
}
|
|
|
|
return promExemplars
|
|
}
|
|
|
|
// mostRecentTimestampInMetric returns the latest timestamp in a batch of metrics
|
|
func mostRecentTimestampInMetric(metric pmetric.Metric) pcommon.Timestamp {
|
|
var ts pcommon.Timestamp
|
|
// handle individual metric based on type
|
|
//exhaustive:enforce
|
|
switch metric.Type() {
|
|
case pmetric.MetricTypeGauge:
|
|
dataPoints := metric.Gauge().DataPoints()
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
ts = max(ts, dataPoints.At(x).Timestamp())
|
|
}
|
|
case pmetric.MetricTypeSum:
|
|
dataPoints := metric.Sum().DataPoints()
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
ts = max(ts, dataPoints.At(x).Timestamp())
|
|
}
|
|
case pmetric.MetricTypeHistogram:
|
|
dataPoints := metric.Histogram().DataPoints()
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
ts = max(ts, dataPoints.At(x).Timestamp())
|
|
}
|
|
case pmetric.MetricTypeExponentialHistogram:
|
|
dataPoints := metric.ExponentialHistogram().DataPoints()
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
ts = max(ts, dataPoints.At(x).Timestamp())
|
|
}
|
|
case pmetric.MetricTypeSummary:
|
|
dataPoints := metric.Summary().DataPoints()
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
ts = max(ts, dataPoints.At(x).Timestamp())
|
|
}
|
|
}
|
|
return ts
|
|
}
|
|
|
|
func (c *PrometheusConverter) addSummaryDataPoints(dataPoints pmetric.SummaryDataPointSlice, resource pcommon.Resource,
|
|
settings Settings, baseName string) {
|
|
for x := 0; x < dataPoints.Len(); x++ {
|
|
pt := dataPoints.At(x)
|
|
timestamp := convertTimeStamp(pt.Timestamp())
|
|
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels, nil, false)
|
|
|
|
// treat sum as a sample in an individual TimeSeries
|
|
sum := &prompb.Sample{
|
|
Value: pt.Sum(),
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
sum.Value = math.Float64frombits(value.StaleNaN)
|
|
}
|
|
// sum and count of the summary should append suffix to baseName
|
|
sumlabels := createLabels(baseName+sumStr, baseLabels)
|
|
c.addSample(sum, sumlabels)
|
|
|
|
// treat count as a sample in an individual TimeSeries
|
|
count := &prompb.Sample{
|
|
Value: float64(pt.Count()),
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
count.Value = math.Float64frombits(value.StaleNaN)
|
|
}
|
|
countlabels := createLabels(baseName+countStr, baseLabels)
|
|
c.addSample(count, countlabels)
|
|
|
|
// process each percentile/quantile
|
|
for i := 0; i < pt.QuantileValues().Len(); i++ {
|
|
qt := pt.QuantileValues().At(i)
|
|
quantile := &prompb.Sample{
|
|
Value: qt.Value(),
|
|
Timestamp: timestamp,
|
|
}
|
|
if pt.Flags().NoRecordedValue() {
|
|
quantile.Value = math.Float64frombits(value.StaleNaN)
|
|
}
|
|
percentileStr := strconv.FormatFloat(qt.Quantile(), 'f', -1, 64)
|
|
qtlabels := createLabels(baseName, baseLabels, quantileStr, percentileStr)
|
|
c.addSample(quantile, qtlabels)
|
|
}
|
|
|
|
startTimestamp := pt.StartTimestamp()
|
|
if settings.ExportCreatedMetric && startTimestamp != 0 {
|
|
createdLabels := createLabels(baseName+createdSuffix, baseLabels)
|
|
c.addTimeSeriesIfNeeded(createdLabels, startTimestamp, pt.Timestamp())
|
|
}
|
|
}
|
|
}
|
|
|
|
// createLabels returns a copy of baseLabels, adding to it the pair model.MetricNameLabel=name.
|
|
// If extras are provided, corresponding label pairs are also added to the returned slice.
|
|
// If extras is uneven length, the last (unpaired) extra will be ignored.
|
|
func createLabels(name string, baseLabels []prompb.Label, extras ...string) []prompb.Label {
|
|
extraLabelCount := len(extras) / 2
|
|
labels := make([]prompb.Label, len(baseLabels), len(baseLabels)+extraLabelCount+1) // +1 for name
|
|
copy(labels, baseLabels)
|
|
|
|
n := len(extras)
|
|
n -= n % 2
|
|
for extrasIdx := 0; extrasIdx < n; extrasIdx += 2 {
|
|
labels = append(labels, prompb.Label{Name: extras[extrasIdx], Value: extras[extrasIdx+1]})
|
|
}
|
|
|
|
labels = append(labels, prompb.Label{Name: model.MetricNameLabel, Value: name})
|
|
return labels
|
|
}
|
|
|
|
// getOrCreateTimeSeries returns the time series corresponding to the label set if existent, and false.
|
|
// Otherwise it creates a new one and returns that, and true.
|
|
func (c *PrometheusConverter) getOrCreateTimeSeries(lbls []prompb.Label) (*prompb.TimeSeries, bool) {
|
|
h := timeSeriesSignature(lbls)
|
|
ts := c.unique[h]
|
|
if ts != nil {
|
|
if isSameMetric(ts, lbls) {
|
|
// We already have this metric
|
|
return ts, false
|
|
}
|
|
|
|
// Look for a matching conflict
|
|
for _, cTS := range c.conflicts[h] {
|
|
if isSameMetric(cTS, lbls) {
|
|
// We already have this metric
|
|
return cTS, false
|
|
}
|
|
}
|
|
|
|
// New conflict
|
|
ts = &prompb.TimeSeries{
|
|
Labels: lbls,
|
|
}
|
|
c.conflicts[h] = append(c.conflicts[h], ts)
|
|
return ts, true
|
|
}
|
|
|
|
// This metric is new
|
|
ts = &prompb.TimeSeries{
|
|
Labels: lbls,
|
|
}
|
|
c.unique[h] = ts
|
|
return ts, true
|
|
}
|
|
|
|
// addTimeSeriesIfNeeded adds a corresponding time series if it doesn't already exist.
|
|
// If the time series doesn't already exist, it gets added with startTimestamp for its value and timestamp for its timestamp,
|
|
// both converted to milliseconds.
|
|
func (c *PrometheusConverter) addTimeSeriesIfNeeded(lbls []prompb.Label, startTimestamp pcommon.Timestamp, timestamp pcommon.Timestamp) {
|
|
ts, created := c.getOrCreateTimeSeries(lbls)
|
|
if created {
|
|
ts.Samples = []prompb.Sample{
|
|
{
|
|
// convert ns to ms
|
|
Value: float64(convertTimeStamp(startTimestamp)),
|
|
Timestamp: convertTimeStamp(timestamp),
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
// addResourceTargetInfo converts the resource to the target info metric.
|
|
func addResourceTargetInfo(resource pcommon.Resource, settings Settings, timestamp pcommon.Timestamp, converter *PrometheusConverter) {
|
|
if settings.DisableTargetInfo || timestamp == 0 {
|
|
return
|
|
}
|
|
|
|
attributes := resource.Attributes()
|
|
identifyingAttrs := []string{
|
|
conventions.AttributeServiceNamespace,
|
|
conventions.AttributeServiceName,
|
|
conventions.AttributeServiceInstanceID,
|
|
}
|
|
nonIdentifyingAttrsCount := attributes.Len()
|
|
for _, a := range identifyingAttrs {
|
|
_, haveAttr := attributes.Get(a)
|
|
if haveAttr {
|
|
nonIdentifyingAttrsCount--
|
|
}
|
|
}
|
|
if nonIdentifyingAttrsCount == 0 {
|
|
// If we only have job + instance, then target_info isn't useful, so don't add it.
|
|
return
|
|
}
|
|
|
|
name := targetMetricName
|
|
if len(settings.Namespace) > 0 {
|
|
name = settings.Namespace + "_" + name
|
|
}
|
|
|
|
labels := createAttributes(resource, attributes, settings.ExternalLabels, identifyingAttrs, false, model.MetricNameLabel, name)
|
|
haveIdentifier := false
|
|
for _, l := range labels {
|
|
if l.Name == model.JobLabel || l.Name == model.InstanceLabel {
|
|
haveIdentifier = true
|
|
break
|
|
}
|
|
}
|
|
|
|
if !haveIdentifier {
|
|
// We need at least one identifying label to generate target_info.
|
|
return
|
|
}
|
|
|
|
sample := &prompb.Sample{
|
|
Value: float64(1),
|
|
// convert ns to ms
|
|
Timestamp: convertTimeStamp(timestamp),
|
|
}
|
|
converter.addSample(sample, labels)
|
|
}
|
|
|
|
// convertTimeStamp converts OTLP timestamp in ns to timestamp in ms
|
|
func convertTimeStamp(timestamp pcommon.Timestamp) int64 {
|
|
return timestamp.AsTime().UnixNano() / (int64(time.Millisecond) / int64(time.Nanosecond))
|
|
}
|