prometheus/model/textparse/openmetricsparse.go

759 lines
22 KiB
Go

// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:generate go get -u modernc.org/golex
//go:generate golex -o=openmetricslex.l.go openmetricslex.l
package textparse
import (
"bytes"
"errors"
"fmt"
"io"
"math"
"strconv"
"strings"
"unicode/utf8"
"github.com/cespare/xxhash/v2"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/value"
)
type openMetricsLexer struct {
b []byte
i int
start int
err error
state int
}
// buf returns the buffer of the current token.
func (l *openMetricsLexer) buf() []byte {
return l.b[l.start:l.i]
}
// next advances the openMetricsLexer to the next character.
func (l *openMetricsLexer) next() byte {
l.i++
if l.i >= len(l.b) {
l.err = io.EOF
return byte(tEOF)
}
// Lex struggles with null bytes. If we are in a label value or help string, where
// they are allowed, consume them here immediately.
for l.b[l.i] == 0 && (l.state == sLValue || l.state == sMeta2 || l.state == sComment) {
l.i++
if l.i >= len(l.b) {
l.err = io.EOF
return byte(tEOF)
}
}
return l.b[l.i]
}
func (l *openMetricsLexer) Error(es string) {
l.err = errors.New(es)
}
// OpenMetricsParser parses samples from a byte slice of samples in the official
// OpenMetrics text exposition format.
// This is based on the working draft https://docs.google.com/document/u/1/d/1KwV0mAXwwbvvifBvDKH_LU1YjyXE_wxCkHNoCGq1GX0/edit
type OpenMetricsParser struct {
l *openMetricsLexer
builder labels.ScratchBuilder
series []byte
mfNameLen int // length of metric family name to get from series.
text []byte
mtype model.MetricType
val float64
ts int64
hasTS bool
start int
// offsets is a list of offsets into series that describe the positions
// of the metric name and label names and values for this series.
// p.offsets[0] is the start character of the metric name.
// p.offsets[1] is the end of the metric name.
// Subsequently, p.offsets is a pair of pair of offsets for the positions
// of the label name and value start and end characters.
offsets []int
eOffsets []int
exemplar []byte
exemplarVal float64
exemplarTs int64
hasExemplarTs bool
// Created timestamp parsing state.
ct int64
ctHashSet uint64
// ignoreExemplar instructs the parser to not overwrite exemplars (to keep them while peeking ahead).
ignoreExemplar bool
// visitedMFName is the metric family name of the last visited metric when peeking ahead
// for _created series during the execution of the CreatedTimestamp method.
visitedMFName []byte
skipCTSeries bool
}
type openMetricsParserOptions struct {
SkipCTSeries bool
}
type OpenMetricsOption func(*openMetricsParserOptions)
// WithOMParserCTSeriesSkipped turns off exposing _created lines
// as series, which makes those only used for parsing created timestamp
// for `CreatedTimestamp` method purposes.
//
// It's recommended to use this option to avoid using _created lines for other
// purposes than created timestamp, but leave false by default for the
// best-effort compatibility.
func WithOMParserCTSeriesSkipped() OpenMetricsOption {
return func(o *openMetricsParserOptions) {
o.SkipCTSeries = true
}
}
// NewOpenMetricsParser returns a new parser for the byte slice with option to skip CT series parsing.
func NewOpenMetricsParser(b []byte, st *labels.SymbolTable, opts ...OpenMetricsOption) Parser {
options := &openMetricsParserOptions{}
for _, opt := range opts {
opt(options)
}
parser := &OpenMetricsParser{
l: &openMetricsLexer{b: b},
builder: labels.NewScratchBuilderWithSymbolTable(st, 16),
skipCTSeries: options.SkipCTSeries,
}
return parser
}
// Series returns the bytes of the series, the timestamp if set, and the value
// of the current sample.
func (p *OpenMetricsParser) Series() ([]byte, *int64, float64) {
if p.hasTS {
ts := p.ts
return p.series, &ts, p.val
}
return p.series, nil, p.val
}
// Histogram returns (nil, nil, nil, nil) for now because OpenMetrics does not
// support sparse histograms yet.
func (p *OpenMetricsParser) Histogram() ([]byte, *int64, *histogram.Histogram, *histogram.FloatHistogram) {
return nil, nil, nil, nil
}
// Help returns the metric name and help text in the current entry.
// Must only be called after Next returned a help entry.
// The returned byte slices become invalid after the next call to Next.
func (p *OpenMetricsParser) Help() ([]byte, []byte) {
m := p.l.b[p.offsets[0]:p.offsets[1]]
// Replacer causes allocations. Replace only when necessary.
if strings.IndexByte(yoloString(p.text), byte('\\')) >= 0 {
// OpenMetrics always uses the Prometheus format label value escaping.
return m, []byte(lvalReplacer.Replace(string(p.text)))
}
return m, p.text
}
// Type returns the metric name and type in the current entry.
// Must only be called after Next returned a type entry.
// The returned byte slices become invalid after the next call to Next.
func (p *OpenMetricsParser) Type() ([]byte, model.MetricType) {
return p.l.b[p.offsets[0]:p.offsets[1]], p.mtype
}
// Unit returns the metric name and unit in the current entry.
// Must only be called after Next returned a unit entry.
// The returned byte slices become invalid after the next call to Next.
func (p *OpenMetricsParser) Unit() ([]byte, []byte) {
return p.l.b[p.offsets[0]:p.offsets[1]], p.text
}
// Comment returns the text of the current comment.
// Must only be called after Next returned a comment entry.
// The returned byte slice becomes invalid after the next call to Next.
func (p *OpenMetricsParser) Comment() []byte {
return p.text
}
// Metric writes the labels of the current sample into the passed labels.
// It returns the string from which the metric was parsed.
func (p *OpenMetricsParser) Metric(l *labels.Labels) string {
// Copy the buffer to a string: this is only necessary for the return value.
s := string(p.series)
p.builder.Reset()
metricName := unreplace(s[p.offsets[0]-p.start : p.offsets[1]-p.start])
p.builder.Add(labels.MetricName, metricName)
for i := 2; i < len(p.offsets); i += 4 {
a := p.offsets[i] - p.start
b := p.offsets[i+1] - p.start
label := unreplace(s[a:b])
c := p.offsets[i+2] - p.start
d := p.offsets[i+3] - p.start
value := normalizeFloatsInLabelValues(p.mtype, label, unreplace(s[c:d]))
p.builder.Add(label, value)
}
p.builder.Sort()
*l = p.builder.Labels()
return s
}
// Exemplar writes the exemplar of the current sample into the passed exemplar.
// It returns whether an exemplar exists. As OpenMetrics only ever has one
// exemplar per sample, every call after the first (for the same sample) will
// always return false.
func (p *OpenMetricsParser) Exemplar(e *exemplar.Exemplar) bool {
if len(p.exemplar) == 0 {
return false
}
// Allocate the full immutable string immediately, so we just
// have to create references on it below.
s := string(p.exemplar)
e.Value = p.exemplarVal
if p.hasExemplarTs {
e.HasTs = true
e.Ts = p.exemplarTs
}
p.builder.Reset()
for i := 0; i < len(p.eOffsets); i += 4 {
a := p.eOffsets[i] - p.start
b := p.eOffsets[i+1] - p.start
c := p.eOffsets[i+2] - p.start
d := p.eOffsets[i+3] - p.start
p.builder.Add(s[a:b], s[c:d])
}
p.builder.Sort()
e.Labels = p.builder.Labels()
// Wipe exemplar so that future calls return false.
p.exemplar = p.exemplar[:0]
return true
}
// CreatedTimestamp returns the created timestamp for a current Metric if exists or nil.
// NOTE(Maniktherana): Might use additional CPU/mem resources due to deep copy of parser required for peeking given 1.0 OM specification on _created series.
func (p *OpenMetricsParser) CreatedTimestamp() *int64 {
if !typeRequiresCT(p.mtype) {
// Not a CT supported metric type, fast path.
p.ctHashSet = 0 // Use ctHashSet as a single way of telling "empty cache"
return nil
}
var (
buf []byte
currName []byte
)
if len(p.series) > 1 && p.series[0] == '{' && p.series[1] == '"' {
// special case for UTF-8 encoded metric family names.
currName = p.series[p.offsets[0]-p.start : p.mfNameLen+2]
} else {
currName = p.series[p.offsets[0]-p.start : p.mfNameLen]
}
currHash := p.seriesHash(&buf, currName)
// Check cache, perhaps we fetched something already.
if currHash == p.ctHashSet && p.ct > 0 {
return &p.ct
}
// Create a new lexer to reset the parser once this function is done executing.
resetLexer := &openMetricsLexer{
b: p.l.b,
i: p.l.i,
start: p.l.start,
err: p.l.err,
state: p.l.state,
}
p.skipCTSeries = false
p.ignoreExemplar = true
savedStart := p.start
defer func() {
p.ignoreExemplar = false
p.start = savedStart
p.l = resetLexer
}()
for {
eType, err := p.Next()
if err != nil {
// This means p.Next() will give error too later on, so def no CT line found.
// This might result in partial scrape with wrong/missing CT, but only
// spec improvement would help.
// TODO: Make sure OM 1.1/2.0 pass CT via metadata or exemplar-like to avoid this.
p.resetCTParseValues()
return nil
}
if eType != EntrySeries {
// Assume we hit different family, no CT line found.
p.resetCTParseValues()
return nil
}
peekedName := p.series[p.offsets[0]-p.start : p.offsets[1]-p.start]
if len(peekedName) < 8 || string(peekedName[len(peekedName)-8:]) != "_created" {
// Not a CT line, search more.
continue
}
// Remove _created suffix.
peekedHash := p.seriesHash(&buf, peekedName[:len(peekedName)-8])
if peekedHash != currHash {
// Found CT line for a different series, for our series no CT.
p.resetCTParseValues()
return nil
}
// All timestamps in OpenMetrics are Unix Epoch in seconds. Convert to milliseconds.
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#timestamps
ct := int64(p.val * 1000.0)
p.setCTParseValues(ct, currHash, currName, true)
return &ct
}
}
var (
leBytes = []byte{108, 101}
quantileBytes = []byte{113, 117, 97, 110, 116, 105, 108, 101}
)
// seriesHash generates a hash based on the metric family name and the offsets
// of label names and values from the parsed OpenMetrics data. It skips quantile
// and le labels for summaries and histograms respectively.
func (p *OpenMetricsParser) seriesHash(offsetsArr *[]byte, metricFamilyName []byte) uint64 {
// Iterate through p.offsets to find the label names and values.
for i := 2; i < len(p.offsets); i += 4 {
lStart := p.offsets[i] - p.start
lEnd := p.offsets[i+1] - p.start
label := p.series[lStart:lEnd]
// Skip quantile and le labels for summaries and histograms.
if p.mtype == model.MetricTypeSummary && bytes.Equal(label, quantileBytes) {
continue
}
if p.mtype == model.MetricTypeHistogram && bytes.Equal(label, leBytes) {
continue
}
*offsetsArr = append(*offsetsArr, p.series[lStart:lEnd]...)
vStart := p.offsets[i+2] - p.start
vEnd := p.offsets[i+3] - p.start
*offsetsArr = append(*offsetsArr, p.series[vStart:vEnd]...)
}
*offsetsArr = append(*offsetsArr, metricFamilyName...)
hashedOffsets := xxhash.Sum64(*offsetsArr)
// Reset the offsets array for later reuse.
*offsetsArr = (*offsetsArr)[:0]
return hashedOffsets
}
// setCTParseValues sets the parser to the state after CreatedTimestamp method was called and CT was found.
// This is useful to prevent re-parsing the same series again and early return the CT value.
func (p *OpenMetricsParser) setCTParseValues(ct int64, ctHashSet uint64, mfName []byte, skipCTSeries bool) {
p.ct = ct
p.ctHashSet = ctHashSet
p.visitedMFName = mfName
p.skipCTSeries = skipCTSeries // Do we need to set it?
}
// resetCTParseValues resets the parser to the state before CreatedTimestamp method was called.
func (p *OpenMetricsParser) resetCTParseValues() {
p.ctHashSet = 0
p.skipCTSeries = true
}
// typeRequiresCT returns true if the metric type requires a _created timestamp.
func typeRequiresCT(t model.MetricType) bool {
switch t {
case model.MetricTypeCounter, model.MetricTypeSummary, model.MetricTypeHistogram:
return true
default:
return false
}
}
// nextToken returns the next token from the openMetricsLexer.
func (p *OpenMetricsParser) nextToken() token {
tok := p.l.Lex()
return tok
}
func (p *OpenMetricsParser) parseError(exp string, got token) error {
e := p.l.i + 1
if len(p.l.b) < e {
e = len(p.l.b)
}
return fmt.Errorf("%s, got %q (%q) while parsing: %q", exp, p.l.b[p.l.start:e], got, p.l.b[p.start:e])
}
// Next advances the parser to the next sample.
// It returns (EntryInvalid, io.EOF) if no samples were read.
func (p *OpenMetricsParser) Next() (Entry, error) {
var err error
p.start = p.l.i
p.offsets = p.offsets[:0]
if !p.ignoreExemplar {
p.eOffsets = p.eOffsets[:0]
p.exemplar = p.exemplar[:0]
p.exemplarVal = 0
p.hasExemplarTs = false
}
switch t := p.nextToken(); t {
case tEOFWord:
if t := p.nextToken(); t != tEOF {
return EntryInvalid, errors.New("unexpected data after # EOF")
}
return EntryInvalid, io.EOF
case tEOF:
return EntryInvalid, errors.New("data does not end with # EOF")
case tHelp, tType, tUnit:
switch t2 := p.nextToken(); t2 {
case tMName:
mStart := p.l.start
mEnd := p.l.i
if p.l.b[mStart] == '"' && p.l.b[mEnd-1] == '"' {
mStart++
mEnd--
}
p.mfNameLen = mEnd - mStart
p.offsets = append(p.offsets, mStart, mEnd)
default:
return EntryInvalid, p.parseError("expected metric name after "+t.String(), t2)
}
switch t2 := p.nextToken(); t2 {
case tText:
if len(p.l.buf()) > 1 {
p.text = p.l.buf()[1 : len(p.l.buf())-1]
} else {
p.text = []byte{}
}
default:
return EntryInvalid, fmt.Errorf("expected text in %s", t.String())
}
switch t {
case tType:
switch s := yoloString(p.text); s {
case "counter":
p.mtype = model.MetricTypeCounter
case "gauge":
p.mtype = model.MetricTypeGauge
case "histogram":
p.mtype = model.MetricTypeHistogram
case "gaugehistogram":
p.mtype = model.MetricTypeGaugeHistogram
case "summary":
p.mtype = model.MetricTypeSummary
case "info":
p.mtype = model.MetricTypeInfo
case "stateset":
p.mtype = model.MetricTypeStateset
case "unknown":
p.mtype = model.MetricTypeUnknown
default:
return EntryInvalid, fmt.Errorf("invalid metric type %q", s)
}
case tHelp:
if !utf8.Valid(p.text) {
return EntryInvalid, fmt.Errorf("help text %q is not a valid utf8 string", p.text)
}
}
switch t {
case tHelp:
return EntryHelp, nil
case tType:
return EntryType, nil
case tUnit:
m := yoloString(p.l.b[p.offsets[0]:p.offsets[1]])
u := yoloString(p.text)
if len(u) > 0 {
if !strings.HasSuffix(m, u) || len(m) < len(u)+1 || p.l.b[p.offsets[1]-len(u)-1] != '_' {
return EntryInvalid, fmt.Errorf("unit %q not a suffix of metric %q", u, m)
}
}
return EntryUnit, nil
}
case tBraceOpen:
// We found a brace, so make room for the eventual metric name. If these
// values aren't updated, then the metric name was not set inside the
// braces and we can return an error.
if len(p.offsets) == 0 {
p.offsets = []int{-1, -1}
}
if p.offsets, err = p.parseLVals(p.offsets, false); err != nil {
return EntryInvalid, err
}
p.series = p.l.b[p.start:p.l.i]
if err := p.parseSeriesEndOfLine(p.nextToken()); err != nil {
return EntryInvalid, err
}
if p.skipCTSeries && p.isCreatedSeries() {
return p.Next()
}
return EntrySeries, nil
case tMName:
p.offsets = append(p.offsets, p.start, p.l.i)
p.series = p.l.b[p.start:p.l.i]
t2 := p.nextToken()
if t2 == tBraceOpen {
p.offsets, err = p.parseLVals(p.offsets, false)
if err != nil {
return EntryInvalid, err
}
p.series = p.l.b[p.start:p.l.i]
t2 = p.nextToken()
}
if err := p.parseSeriesEndOfLine(t2); err != nil {
return EntryInvalid, err
}
if p.skipCTSeries && p.isCreatedSeries() {
return p.Next()
}
return EntrySeries, nil
default:
err = p.parseError("expected a valid start token", t)
}
return EntryInvalid, err
}
func (p *OpenMetricsParser) parseComment() error {
var err error
if p.ignoreExemplar {
for t := p.nextToken(); t != tLinebreak; t = p.nextToken() {
if t == tEOF {
return errors.New("data does not end with # EOF")
}
}
return nil
}
// Parse the labels.
p.eOffsets, err = p.parseLVals(p.eOffsets, true)
if err != nil {
return err
}
p.exemplar = p.l.b[p.start:p.l.i]
// Get the value.
p.exemplarVal, err = p.getFloatValue(p.nextToken(), "exemplar labels")
if err != nil {
return err
}
// Read the optional timestamp.
p.hasExemplarTs = false
switch t2 := p.nextToken(); t2 {
case tEOF:
return errors.New("data does not end with # EOF")
case tLinebreak:
break
case tTimestamp:
p.hasExemplarTs = true
var ts float64
// A float is enough to hold what we need for millisecond resolution.
if ts, err = parseFloat(yoloString(p.l.buf()[1:])); err != nil {
return fmt.Errorf("%w while parsing: %q", err, p.l.b[p.start:p.l.i])
}
if math.IsNaN(ts) || math.IsInf(ts, 0) {
return fmt.Errorf("invalid exemplar timestamp %f", ts)
}
p.exemplarTs = int64(ts * 1000)
switch t3 := p.nextToken(); t3 {
case tLinebreak:
default:
return p.parseError("expected next entry after exemplar timestamp", t3)
}
default:
return p.parseError("expected timestamp or comment", t2)
}
return nil
}
func (p *OpenMetricsParser) parseLVals(offsets []int, isExemplar bool) ([]int, error) {
t := p.nextToken()
for {
curTStart := p.l.start
curTI := p.l.i
switch t {
case tBraceClose:
return offsets, nil
case tLName:
case tQString:
default:
return nil, p.parseError("expected label name", t)
}
t = p.nextToken()
// A quoted string followed by a comma or brace is a metric name. Set the
// offsets and continue processing. If this is an exemplar, this format
// is not allowed.
if t == tComma || t == tBraceClose {
if isExemplar {
return nil, p.parseError("expected label name", t)
}
if offsets[0] != -1 || offsets[1] != -1 {
return nil, fmt.Errorf("metric name already set while parsing: %q", p.l.b[p.start:p.l.i])
}
offsets[0] = curTStart + 1
offsets[1] = curTI - 1
if t == tBraceClose {
return offsets, nil
}
t = p.nextToken()
continue
}
// We have a label name, and it might be quoted.
if p.l.b[curTStart] == '"' {
curTStart++
curTI--
}
offsets = append(offsets, curTStart, curTI)
if t != tEqual {
return nil, p.parseError("expected equal", t)
}
if t := p.nextToken(); t != tLValue {
return nil, p.parseError("expected label value", t)
}
if !utf8.Valid(p.l.buf()) {
return nil, fmt.Errorf("invalid UTF-8 label value: %q", p.l.buf())
}
// The openMetricsLexer ensures the value string is quoted. Strip first
// and last character.
offsets = append(offsets, p.l.start+1, p.l.i-1)
// Free trailing commas are allowed.
t = p.nextToken()
if t == tComma {
t = p.nextToken()
} else if t != tBraceClose {
return nil, p.parseError("expected comma or brace close", t)
}
}
}
// isCreatedSeries returns true if the current series is a _created series.
func (p *OpenMetricsParser) isCreatedSeries() bool {
metricName := p.series[p.offsets[0]-p.start : p.offsets[1]-p.start]
// check length so the metric is longer than len("_created")
if typeRequiresCT(p.mtype) && len(metricName) >= 8 && string(metricName[len(metricName)-8:]) == "_created" {
return true
}
return false
}
// parseSeriesEndOfLine parses the series end of the line (value, optional
// timestamp, commentary, etc.) after the metric name and labels.
// It starts parsing with the provided token.
func (p *OpenMetricsParser) parseSeriesEndOfLine(t token) error {
if p.offsets[0] == -1 {
return fmt.Errorf("metric name not set while parsing: %q", p.l.b[p.start:p.l.i])
}
var err error
p.val, err = p.getFloatValue(t, "metric")
if err != nil {
return err
}
p.hasTS = false
switch t2 := p.nextToken(); t2 {
case tEOF:
return errors.New("data does not end with # EOF")
case tLinebreak:
break
case tComment:
if err := p.parseComment(); err != nil {
return err
}
case tTimestamp:
p.hasTS = true
var ts float64
// A float is enough to hold what we need for millisecond resolution.
if ts, err = parseFloat(yoloString(p.l.buf()[1:])); err != nil {
return fmt.Errorf("%w while parsing: %q", err, p.l.b[p.start:p.l.i])
}
if math.IsNaN(ts) || math.IsInf(ts, 0) {
return fmt.Errorf("invalid timestamp %f", ts)
}
p.ts = int64(ts * 1000)
switch t3 := p.nextToken(); t3 {
case tLinebreak:
case tComment:
if err := p.parseComment(); err != nil {
return err
}
default:
return p.parseError("expected next entry after timestamp", t3)
}
}
return nil
}
func (p *OpenMetricsParser) getFloatValue(t token, after string) (float64, error) {
if t != tValue {
return 0, p.parseError(fmt.Sprintf("expected value after %v", after), t)
}
val, err := parseFloat(yoloString(p.l.buf()[1:]))
if err != nil {
return 0, fmt.Errorf("%w while parsing: %q", err, p.l.b[p.start:p.l.i])
}
// Ensure canonical NaN value.
if math.IsNaN(p.exemplarVal) {
val = math.Float64frombits(value.NormalNaN)
}
return val, nil
}
// normalizeFloatsInLabelValues ensures that values of the "le" labels of classic histograms and "quantile" labels
// of summaries follow OpenMetrics formatting rules.
func normalizeFloatsInLabelValues(t model.MetricType, l, v string) string {
if (t == model.MetricTypeSummary && l == model.QuantileLabel) || (t == model.MetricTypeHistogram && l == model.BucketLabel) {
f, err := strconv.ParseFloat(v, 64)
if err == nil {
return formatOpenMetricsFloat(f)
}
}
return v
}