mirror of https://github.com/prometheus/prometheus
502 lines
15 KiB
Go
502 lines
15 KiB
Go
// Copyright 2021 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package chunkenc
|
|
|
|
import (
|
|
"math"
|
|
|
|
"github.com/prometheus/prometheus/model/histogram"
|
|
)
|
|
|
|
func writeHistogramChunkLayout(
|
|
b *bstream, schema int32, zeroThreshold float64,
|
|
positiveSpans, negativeSpans []histogram.Span,
|
|
) {
|
|
putZeroThreshold(b, zeroThreshold)
|
|
putVarbitInt(b, int64(schema))
|
|
putHistogramChunkLayoutSpans(b, positiveSpans)
|
|
putHistogramChunkLayoutSpans(b, negativeSpans)
|
|
}
|
|
|
|
func readHistogramChunkLayout(b *bstreamReader) (
|
|
schema int32, zeroThreshold float64,
|
|
positiveSpans, negativeSpans []histogram.Span,
|
|
err error,
|
|
) {
|
|
zeroThreshold, err = readZeroThreshold(b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
v, err := readVarbitInt(b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
schema = int32(v)
|
|
|
|
positiveSpans, err = readHistogramChunkLayoutSpans(b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
negativeSpans, err = readHistogramChunkLayoutSpans(b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func putHistogramChunkLayoutSpans(b *bstream, spans []histogram.Span) {
|
|
putVarbitUint(b, uint64(len(spans)))
|
|
for _, s := range spans {
|
|
putVarbitUint(b, uint64(s.Length))
|
|
putVarbitInt(b, int64(s.Offset))
|
|
}
|
|
}
|
|
|
|
func readHistogramChunkLayoutSpans(b *bstreamReader) ([]histogram.Span, error) {
|
|
var spans []histogram.Span
|
|
num, err := readVarbitUint(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
for i := 0; i < int(num); i++ {
|
|
|
|
length, err := readVarbitUint(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
offset, err := readVarbitInt(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
spans = append(spans, histogram.Span{
|
|
Length: uint32(length),
|
|
Offset: int32(offset),
|
|
})
|
|
}
|
|
return spans, nil
|
|
}
|
|
|
|
// putZeroThreshold writes the zero threshold to the bstream. It stores typical
|
|
// values in just one byte, but needs 9 bytes for other values. In detail:
|
|
// - If the threshold is 0, store a single zero byte.
|
|
// - If the threshold is a power of 2 between (and including) 2^-243 and 2^10,
|
|
// take the exponent from the IEEE 754 representation of the threshold, which
|
|
// covers a range between (and including) -242 and 11. (2^-243 is 0.5*2^-242
|
|
// in IEEE 754 representation, and 2^10 is 0.5*2^11.) Add 243 to the exponent
|
|
// and store the result (which will be between 1 and 254) as a single
|
|
// byte. Note that small powers of two are preferred values for the zero
|
|
// threshold. The default value for the zero threshold is 2^-128 (or
|
|
// 0.5*2^-127 in IEEE 754 representation) and will therefore be encoded as a
|
|
// single byte (with value 116).
|
|
// - In all other cases, store 255 as a single byte, followed by the 8 bytes of
|
|
// the threshold as a float64, i.e. taking 9 bytes in total.
|
|
func putZeroThreshold(b *bstream, threshold float64) {
|
|
if threshold == 0 {
|
|
b.writeByte(0)
|
|
return
|
|
}
|
|
frac, exp := math.Frexp(threshold)
|
|
if frac != 0.5 || exp < -242 || exp > 11 {
|
|
b.writeByte(255)
|
|
b.writeBits(math.Float64bits(threshold), 64)
|
|
return
|
|
}
|
|
b.writeByte(byte(exp + 243))
|
|
}
|
|
|
|
// readZeroThreshold reads the zero threshold written with putZeroThreshold.
|
|
func readZeroThreshold(br *bstreamReader) (float64, error) {
|
|
b, err := br.ReadByte()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
switch b {
|
|
case 0:
|
|
return 0, nil
|
|
case 255:
|
|
v, err := br.readBits(64)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
return math.Float64frombits(v), nil
|
|
default:
|
|
return math.Ldexp(0.5, int(b)-243), nil
|
|
}
|
|
}
|
|
|
|
type bucketIterator struct {
|
|
spans []histogram.Span
|
|
span int // Span position of last yielded bucket.
|
|
bucket int // Bucket position within span of last yielded bucket.
|
|
idx int // Bucket index (globally across all spans) of last yielded bucket.
|
|
}
|
|
|
|
func newBucketIterator(spans []histogram.Span) *bucketIterator {
|
|
b := bucketIterator{
|
|
spans: spans,
|
|
span: 0,
|
|
bucket: -1,
|
|
idx: -1,
|
|
}
|
|
if len(spans) > 0 {
|
|
b.idx += int(spans[0].Offset)
|
|
}
|
|
return &b
|
|
}
|
|
|
|
func (b *bucketIterator) Next() (int, bool) {
|
|
// We're already out of bounds.
|
|
if b.span >= len(b.spans) {
|
|
return 0, false
|
|
}
|
|
if b.bucket < int(b.spans[b.span].Length)-1 { // Try to move within same span.
|
|
b.bucket++
|
|
b.idx++
|
|
return b.idx, true
|
|
}
|
|
|
|
for b.span < len(b.spans)-1 { // Try to move from one span to the next.
|
|
b.span++
|
|
b.idx += int(b.spans[b.span].Offset + 1)
|
|
b.bucket = 0
|
|
if b.spans[b.span].Length == 0 {
|
|
b.idx--
|
|
continue
|
|
}
|
|
return b.idx, true
|
|
}
|
|
|
|
// We're out of options.
|
|
return 0, false
|
|
}
|
|
|
|
// An Insert describes how many new buckets have to be inserted before
|
|
// processing the pos'th bucket from the original slice.
|
|
type Insert struct {
|
|
pos int
|
|
num int
|
|
}
|
|
|
|
// expandSpansForward returns the inserts to expand the bucket spans 'a' so that
|
|
// they match the spans in 'b'. 'b' must cover the same or more buckets than
|
|
// 'a', otherwise the function will return false.
|
|
//
|
|
// Example:
|
|
//
|
|
// Let's say the old buckets look like this:
|
|
//
|
|
// span syntax: [offset, length]
|
|
// spans : [ 0 , 2 ] [2,1] [ 3 , 2 ] [3,1] [1,1]
|
|
// bucket idx : [0] [1] 2 3 [4] 5 6 7 [8] [9] 10 11 12 [13] 14 [15]
|
|
// raw values 6 3 3 2 4 5 1
|
|
// deltas 6 -3 0 -1 2 1 -4
|
|
//
|
|
// But now we introduce a new bucket layout. (Carefully chosen example where we
|
|
// have a span appended, one unchanged[*], one prepended, and two merge - in
|
|
// that order.)
|
|
//
|
|
// [*] unchanged in terms of which bucket indices they represent. but to achieve
|
|
// that, their offset needs to change if "disrupted" by spans changing ahead of
|
|
// them
|
|
//
|
|
// \/ this one is "unchanged"
|
|
// spans : [ 0 , 3 ] [1,1] [ 1 , 4 ] [ 3 , 3 ]
|
|
// bucket idx : [0] [1] [2] 3 [4] 5 [6] [7] [8] [9] 10 11 12 [13] [14] [15]
|
|
// raw values 6 3 0 3 0 0 2 4 5 0 1
|
|
// deltas 6 -3 -3 3 -3 0 2 2 1 -5 1
|
|
// delta mods: / \ / \ / \
|
|
//
|
|
// Note for histograms with delta-encoded buckets: Whenever any new buckets are
|
|
// introduced, the subsequent "old" bucket needs to readjust its delta to the
|
|
// new base of 0. Thus, for the caller who wants to transform the set of
|
|
// original deltas to a new set of deltas to match a new span layout that adds
|
|
// buckets, we simply need to generate a list of inserts.
|
|
//
|
|
// Note: Within expandSpansForward we don't have to worry about the changes to the
|
|
// spans themselves, thanks to the iterators we get to work with the more useful
|
|
// bucket indices (which of course directly correspond to the buckets we have to
|
|
// adjust).
|
|
func expandSpansForward(a, b []histogram.Span) (forward []Insert, ok bool) {
|
|
ai := newBucketIterator(a)
|
|
bi := newBucketIterator(b)
|
|
|
|
var inserts []Insert
|
|
|
|
// When inter.num becomes > 0, this becomes a valid insert that should
|
|
// be yielded when we finish a streak of new buckets.
|
|
var inter Insert
|
|
|
|
av, aOK := ai.Next()
|
|
bv, bOK := bi.Next()
|
|
loop:
|
|
for {
|
|
switch {
|
|
case aOK && bOK:
|
|
switch {
|
|
case av == bv: // Both have an identical value. move on!
|
|
// Finish WIP insert and reset.
|
|
if inter.num > 0 {
|
|
inserts = append(inserts, inter)
|
|
}
|
|
inter.num = 0
|
|
av, aOK = ai.Next()
|
|
bv, bOK = bi.Next()
|
|
inter.pos++
|
|
case av < bv: // b misses a value that is in a.
|
|
return inserts, false
|
|
case av > bv: // a misses a value that is in b. Forward b and recompare.
|
|
inter.num++
|
|
bv, bOK = bi.Next()
|
|
}
|
|
case aOK && !bOK: // b misses a value that is in a.
|
|
return inserts, false
|
|
case !aOK && bOK: // a misses a value that is in b. Forward b and recompare.
|
|
inter.num++
|
|
bv, bOK = bi.Next()
|
|
default: // Both iterators ran out. We're done.
|
|
if inter.num > 0 {
|
|
inserts = append(inserts, inter)
|
|
}
|
|
break loop
|
|
}
|
|
}
|
|
|
|
return inserts, true
|
|
}
|
|
|
|
// expandSpansBothWays is similar to expandSpansForward, but now b may also
|
|
// cover an entirely different set of buckets. The function returns the
|
|
// “forward” inserts to expand 'a' to also cover all the buckets exclusively
|
|
// covered by 'b', and it returns the “backward” inserts to expand 'b' to also
|
|
// cover all the buckets exclusively covered by 'a'.
|
|
func expandSpansBothWays(a, b []histogram.Span) (forward, backward []Insert, mergedSpans []histogram.Span) {
|
|
ai := newBucketIterator(a)
|
|
bi := newBucketIterator(b)
|
|
|
|
var fInserts, bInserts []Insert
|
|
var lastBucket int
|
|
addBucket := func(b int) {
|
|
offset := b - lastBucket - 1
|
|
if offset == 0 && len(mergedSpans) > 0 {
|
|
mergedSpans[len(mergedSpans)-1].Length++
|
|
} else {
|
|
if len(mergedSpans) == 0 {
|
|
offset++
|
|
}
|
|
mergedSpans = append(mergedSpans, histogram.Span{
|
|
Offset: int32(offset),
|
|
Length: 1,
|
|
})
|
|
}
|
|
|
|
lastBucket = b
|
|
}
|
|
|
|
// When fInter.num (or bInter.num, respectively) becomes > 0, this
|
|
// becomes a valid insert that should be yielded when we finish a streak
|
|
// of new buckets.
|
|
var fInter, bInter Insert
|
|
|
|
av, aOK := ai.Next()
|
|
bv, bOK := bi.Next()
|
|
loop:
|
|
for {
|
|
switch {
|
|
case aOK && bOK:
|
|
switch {
|
|
case av == bv: // Both have an identical value. move on!
|
|
// Finish WIP insert and reset.
|
|
if fInter.num > 0 {
|
|
fInserts = append(fInserts, fInter)
|
|
fInter.num = 0
|
|
}
|
|
if bInter.num > 0 {
|
|
bInserts = append(bInserts, bInter)
|
|
bInter.num = 0
|
|
}
|
|
addBucket(av)
|
|
av, aOK = ai.Next()
|
|
bv, bOK = bi.Next()
|
|
fInter.pos++
|
|
bInter.pos++
|
|
case av < bv: // b misses a value that is in a.
|
|
bInter.num++
|
|
// Collect the forward inserts before advancing
|
|
// the position of 'a'.
|
|
if fInter.num > 0 {
|
|
fInserts = append(fInserts, fInter)
|
|
fInter.num = 0
|
|
}
|
|
addBucket(av)
|
|
fInter.pos++
|
|
av, aOK = ai.Next()
|
|
case av > bv: // a misses a value that is in b. Forward b and recompare.
|
|
fInter.num++
|
|
// Collect the backward inserts before advancing the
|
|
// position of 'b'.
|
|
if bInter.num > 0 {
|
|
bInserts = append(bInserts, bInter)
|
|
bInter.num = 0
|
|
}
|
|
addBucket(bv)
|
|
bInter.pos++
|
|
bv, bOK = bi.Next()
|
|
}
|
|
case aOK && !bOK: // b misses a value that is in a.
|
|
bInter.num++
|
|
addBucket(av)
|
|
av, aOK = ai.Next()
|
|
case !aOK && bOK: // a misses a value that is in b. Forward b and recompare.
|
|
fInter.num++
|
|
addBucket(bv)
|
|
bv, bOK = bi.Next()
|
|
default: // Both iterators ran out. We're done.
|
|
if fInter.num > 0 {
|
|
fInserts = append(fInserts, fInter)
|
|
}
|
|
if bInter.num > 0 {
|
|
bInserts = append(bInserts, bInter)
|
|
}
|
|
break loop
|
|
}
|
|
}
|
|
|
|
return fInserts, bInserts, mergedSpans
|
|
}
|
|
|
|
type bucketValue interface {
|
|
int64 | float64
|
|
}
|
|
|
|
// insert merges 'in' with the provided inserts and writes them into 'out',
|
|
// which must already have the appropriate length. 'out' is also returned for
|
|
// convenience.
|
|
func insert[BV bucketValue](in, out []BV, inserts []Insert, deltas bool) []BV {
|
|
var (
|
|
oi int // Position in out.
|
|
v BV // The last value seen.
|
|
ii int // The next insert to process.
|
|
)
|
|
for i, d := range in {
|
|
if ii < len(inserts) && i == inserts[ii].pos {
|
|
// We have an insert!
|
|
// Add insert.num new delta values such that their
|
|
// bucket values equate 0. When deltas==false, it means
|
|
// that it is an absolute value. So we set it to 0
|
|
// directly.
|
|
if deltas {
|
|
out[oi] = -v
|
|
} else {
|
|
out[oi] = 0
|
|
}
|
|
oi++
|
|
for x := 1; x < inserts[ii].num; x++ {
|
|
out[oi] = 0
|
|
oi++
|
|
}
|
|
ii++
|
|
|
|
// Now save the value from the input. The delta value we
|
|
// should save is the original delta value + the last
|
|
// value of the point before the insert (to undo the
|
|
// delta that was introduced by the insert). When
|
|
// deltas==false, it means that it is an absolute value,
|
|
// so we set it directly to the value in the 'in' slice.
|
|
if deltas {
|
|
out[oi] = d + v
|
|
} else {
|
|
out[oi] = d
|
|
}
|
|
oi++
|
|
v = d + v
|
|
continue
|
|
}
|
|
// If there was no insert, the original delta is still valid.
|
|
out[oi] = d
|
|
oi++
|
|
v += d
|
|
}
|
|
switch ii {
|
|
case len(inserts):
|
|
// All inserts processed. Nothing more to do.
|
|
case len(inserts) - 1:
|
|
// One more insert to process at the end.
|
|
if deltas {
|
|
out[oi] = -v
|
|
} else {
|
|
out[oi] = 0
|
|
}
|
|
oi++
|
|
for x := 1; x < inserts[ii].num; x++ {
|
|
out[oi] = 0
|
|
oi++
|
|
}
|
|
default:
|
|
panic("unprocessed inserts left")
|
|
}
|
|
return out
|
|
}
|
|
|
|
// counterResetHint returns a CounterResetHint based on the CounterResetHeader
|
|
// and on the position into the chunk.
|
|
func counterResetHint(crh CounterResetHeader, numRead uint16) histogram.CounterResetHint {
|
|
switch {
|
|
case crh == GaugeType:
|
|
// A gauge histogram chunk only contains gauge histograms.
|
|
return histogram.GaugeType
|
|
case numRead > 1:
|
|
// In a counter histogram chunk, there will not be any counter
|
|
// resets after the first histogram.
|
|
return histogram.NotCounterReset
|
|
case crh == CounterReset:
|
|
// If the chunk was started because of a counter reset, we can
|
|
// safely return that hint. This histogram always has to be
|
|
// treated as a counter reset.
|
|
return histogram.CounterReset
|
|
default:
|
|
// Sadly, we have to return "unknown" as the hint for all other
|
|
// cases, even if we know that the chunk was started without a
|
|
// counter reset. But we cannot be sure that the previous chunk
|
|
// still exists in the TSDB, so we conservatively return
|
|
// "unknown". On the bright side, this case should be relatively
|
|
// rare.
|
|
//
|
|
// TODO(beorn7): Nevertheless, if the current chunk is in the
|
|
// middle of a block (not the first chunk in the block for this
|
|
// series), it's probably safe to assume that the previous chunk
|
|
// will exist in the TSDB for as long as the current chunk
|
|
// exist, and we could safely return
|
|
// "histogram.NotCounterReset". This needs some more work and
|
|
// might not be worth the effort and/or risk. To be vetted...
|
|
return histogram.UnknownCounterReset
|
|
}
|
|
}
|
|
|
|
// Handle pathological case of empty span when advancing span idx.
|
|
// Call it with idx==-1 to find the first non empty span.
|
|
func nextNonEmptySpanSliceIdx(idx int, bucketIdx int32, spans []histogram.Span) (newIdx int, newBucketIdx int32) {
|
|
for idx++; idx < len(spans); idx++ {
|
|
if spans[idx].Length > 0 {
|
|
return idx, bucketIdx + spans[idx].Offset + 1
|
|
}
|
|
bucketIdx += spans[idx].Offset
|
|
}
|
|
return idx, 0
|
|
}
|