You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/storage/remote/queue_manager.go

970 lines
29 KiB

// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package remote
import (
"context"
"math"
"strconv"
"sync"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/gogo/protobuf/proto"
"github.com/golang/snappy"
"github.com/opentracing/opentracing-go"
"github.com/opentracing/opentracing-go/ext"
"go.uber.org/atomic"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/prometheus/prometheus/pkg/relabel"
"github.com/prometheus/prometheus/prompb"
"github.com/prometheus/prometheus/tsdb/record"
"github.com/prometheus/prometheus/tsdb/wal"
)
const (
// We track samples in/out and how long pushes take using an Exponentially
// Weighted Moving Average.
ewmaWeight = 0.2
shardUpdateDuration = 10 * time.Second
// Allow 30% too many shards before scaling down.
shardToleranceFraction = 0.3
)
type queueManagerMetrics struct {
reg prometheus.Registerer
succeededSamplesTotal prometheus.Counter
failedSamplesTotal prometheus.Counter
retriedSamplesTotal prometheus.Counter
droppedSamplesTotal prometheus.Counter
enqueueRetriesTotal prometheus.Counter
sentBatchDuration prometheus.Histogram
highestSentTimestamp *maxTimestamp
pendingSamples prometheus.Gauge
shardCapacity prometheus.Gauge
numShards prometheus.Gauge
maxNumShards prometheus.Gauge
minNumShards prometheus.Gauge
desiredNumShards prometheus.Gauge
bytesSent prometheus.Counter
}
func newQueueManagerMetrics(r prometheus.Registerer, rn, e string) *queueManagerMetrics {
m := &queueManagerMetrics{
reg: r,
}
constLabels := prometheus.Labels{
remoteName: rn,
endpoint: e,
}
m.succeededSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "succeeded_samples_total",
Help: "Total number of samples successfully sent to remote storage.",
ConstLabels: constLabels,
})
m.failedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "failed_samples_total",
Help: "Total number of samples which failed on send to remote storage, non-recoverable errors.",
ConstLabels: constLabels,
})
m.retriedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "retried_samples_total",
Help: "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.",
ConstLabels: constLabels,
})
m.droppedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "dropped_samples_total",
Help: "Total number of samples which were dropped after being read from the WAL before being sent via remote write.",
ConstLabels: constLabels,
})
m.enqueueRetriesTotal = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "enqueue_retries_total",
Help: "Total number of times enqueue has failed because a shards queue was full.",
ConstLabels: constLabels,
})
m.sentBatchDuration = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "sent_batch_duration_seconds",
Help: "Duration of sample batch send calls to the remote storage.",
Buckets: append(prometheus.DefBuckets, 25, 60, 120, 300),
ConstLabels: constLabels,
})
m.highestSentTimestamp = &maxTimestamp{
Gauge: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "queue_highest_sent_timestamp_seconds",
Help: "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch.",
ConstLabels: constLabels,
}),
}
m.pendingSamples = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "pending_samples",
Help: "The number of samples pending in the queues shards to be sent to the remote storage.",
ConstLabels: constLabels,
})
m.shardCapacity = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shard_capacity",
Help: "The capacity of each shard of the queue used for parallel sending to the remote storage.",
ConstLabels: constLabels,
})
m.numShards = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shards",
Help: "The number of shards used for parallel sending to the remote storage.",
ConstLabels: constLabels,
})
m.maxNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shards_max",
Help: "The maximum number of shards that the queue is allowed to run.",
ConstLabels: constLabels,
})
m.minNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shards_min",
Help: "The minimum number of shards that the queue is allowed to run.",
ConstLabels: constLabels,
})
m.desiredNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shards_desired",
Help: "The number of shards that the queues shard calculation wants to run based on the rate of samples in vs. samples out.",
ConstLabels: constLabels,
})
m.bytesSent = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "sent_bytes_total",
Help: "The total number of bytes sent by the queue.",
ConstLabels: constLabels,
})
return m
}
func (m *queueManagerMetrics) register() {
if m.reg != nil {
m.reg.MustRegister(
m.succeededSamplesTotal,
m.failedSamplesTotal,
m.retriedSamplesTotal,
m.droppedSamplesTotal,
m.enqueueRetriesTotal,
m.sentBatchDuration,
m.highestSentTimestamp,
m.pendingSamples,
m.shardCapacity,
m.numShards,
m.maxNumShards,
m.minNumShards,
m.desiredNumShards,
m.bytesSent,
)
}
}
func (m *queueManagerMetrics) unregister() {
if m.reg != nil {
m.reg.Unregister(m.succeededSamplesTotal)
m.reg.Unregister(m.failedSamplesTotal)
m.reg.Unregister(m.retriedSamplesTotal)
m.reg.Unregister(m.droppedSamplesTotal)
m.reg.Unregister(m.enqueueRetriesTotal)
m.reg.Unregister(m.sentBatchDuration)
m.reg.Unregister(m.highestSentTimestamp)
m.reg.Unregister(m.pendingSamples)
m.reg.Unregister(m.shardCapacity)
m.reg.Unregister(m.numShards)
m.reg.Unregister(m.maxNumShards)
m.reg.Unregister(m.minNumShards)
m.reg.Unregister(m.desiredNumShards)
m.reg.Unregister(m.bytesSent)
}
}
// WriteClient defines an interface for sending a batch of samples to an
// external timeseries database.
type WriteClient interface {
// Store stores the given samples in the remote storage.
Store(context.Context, []byte) error
// Name uniquely identifies the remote storage.
Name() string
// Endpoint is the remote read or write endpoint for the storage client.
Endpoint() string
}
// QueueManager manages a queue of samples to be sent to the Storage
// indicated by the provided WriteClient. Implements writeTo interface
// used by WAL Watcher.
type QueueManager struct {
lastSendTimestamp atomic.Int64
logger log.Logger
flushDeadline time.Duration
cfg config.QueueConfig
externalLabels labels.Labels
relabelConfigs []*relabel.Config
watcher *wal.Watcher
clientMtx sync.RWMutex
storeClient WriteClient
seriesMtx sync.Mutex
seriesLabels map[uint64]labels.Labels
seriesSegmentIndexes map[uint64]int
droppedSeries map[uint64]struct{}
shards *shards
numShards int
reshardChan chan int
quit chan struct{}
wg sync.WaitGroup
samplesIn, samplesDropped, samplesOut, samplesOutDuration *ewmaRate
metrics *queueManagerMetrics
interner *pool
highestRecvTimestamp *maxTimestamp
}
// NewQueueManager builds a new QueueManager.
func NewQueueManager(
metrics *queueManagerMetrics,
watcherMetrics *wal.WatcherMetrics,
readerMetrics *wal.LiveReaderMetrics,
logger log.Logger,
walDir string,
samplesIn *ewmaRate,
cfg config.QueueConfig,
externalLabels labels.Labels,
relabelConfigs []*relabel.Config,
client WriteClient,
flushDeadline time.Duration,
interner *pool,
highestRecvTimestamp *maxTimestamp,
) *QueueManager {
if logger == nil {
logger = log.NewNopLogger()
}
logger = log.With(logger, remoteName, client.Name(), endpoint, client.Endpoint())
t := &QueueManager{
logger: logger,
flushDeadline: flushDeadline,
cfg: cfg,
externalLabels: externalLabels,
relabelConfigs: relabelConfigs,
storeClient: client,
seriesLabels: make(map[uint64]labels.Labels),
seriesSegmentIndexes: make(map[uint64]int),
droppedSeries: make(map[uint64]struct{}),
numShards: cfg.MinShards,
reshardChan: make(chan int),
quit: make(chan struct{}),
samplesIn: samplesIn,
samplesDropped: newEWMARate(ewmaWeight, shardUpdateDuration),
samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration),
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
metrics: metrics,
interner: interner,
highestRecvTimestamp: highestRecvTimestamp,
}
t.watcher = wal.NewWatcher(watcherMetrics, readerMetrics, logger, client.Name(), t, walDir)
t.shards = t.newShards()
return t
}
// Append queues a sample to be sent to the remote storage. Blocks until all samples are
// enqueued on their shards or a shutdown signal is received.
func (t *QueueManager) Append(samples []record.RefSample) bool {
outer:
for _, s := range samples {
t.seriesMtx.Lock()
lbls, ok := t.seriesLabels[s.Ref]
if !ok {
t.metrics.droppedSamplesTotal.Inc()
t.samplesDropped.incr(1)
if _, ok := t.droppedSeries[s.Ref]; !ok {
level.Info(t.logger).Log("msg", "Dropped sample for series that was not explicitly dropped via relabelling", "ref", s.Ref)
}
t.seriesMtx.Unlock()
continue
}
t.seriesMtx.Unlock()
// This will only loop if the queues are being resharded.
backoff := t.cfg.MinBackoff
for {
select {
case <-t.quit:
return false
default:
}
if t.shards.enqueue(s.Ref, sample{
labels: lbls,
t: s.T,
v: s.V,
}) {
continue outer
}
t.metrics.enqueueRetriesTotal.Inc()
time.Sleep(time.Duration(backoff))
backoff = backoff * 2
if backoff > t.cfg.MaxBackoff {
backoff = t.cfg.MaxBackoff
}
}
}
return true
}
// Start the queue manager sending samples to the remote storage.
// Does not block.
func (t *QueueManager) Start() {
// Register and initialise some metrics.
t.metrics.register()
t.metrics.shardCapacity.Set(float64(t.cfg.Capacity))
t.metrics.maxNumShards.Set(float64(t.cfg.MaxShards))
t.metrics.minNumShards.Set(float64(t.cfg.MinShards))
t.metrics.desiredNumShards.Set(float64(t.cfg.MinShards))
t.shards.start(t.numShards)
t.watcher.Start()
t.wg.Add(2)
go t.updateShardsLoop()
go t.reshardLoop()
}
// Stop stops sending samples to the remote storage and waits for pending
// sends to complete.
func (t *QueueManager) Stop() {
level.Info(t.logger).Log("msg", "Stopping remote storage...")
defer level.Info(t.logger).Log("msg", "Remote storage stopped.")
close(t.quit)
t.wg.Wait()
// Wait for all QueueManager routines to end before stopping shards and WAL watcher. This
// is to ensure we don't end up executing a reshard and shards.stop() at the same time, which
// causes a closed channel panic.
t.shards.stop()
t.watcher.Stop()
// On shutdown, release the strings in the labels from the intern pool.
t.seriesMtx.Lock()
for _, labels := range t.seriesLabels {
t.releaseLabels(labels)
}
t.seriesMtx.Unlock()
t.metrics.unregister()
}
// StoreSeries keeps track of which series we know about for lookups when sending samples to remote.
func (t *QueueManager) StoreSeries(series []record.RefSeries, index int) {
t.seriesMtx.Lock()
defer t.seriesMtx.Unlock()
for _, s := range series {
ls := processExternalLabels(s.Labels, t.externalLabels)
lbls := relabel.Process(ls, t.relabelConfigs...)
if len(lbls) == 0 {
t.droppedSeries[s.Ref] = struct{}{}
continue
}
t.seriesSegmentIndexes[s.Ref] = index
t.internLabels(lbls)
// We should not ever be replacing a series labels in the map, but just
// in case we do we need to ensure we do not leak the replaced interned
// strings.
if orig, ok := t.seriesLabels[s.Ref]; ok {
t.releaseLabels(orig)
}
t.seriesLabels[s.Ref] = lbls
}
}
// SeriesReset is used when reading a checkpoint. WAL Watcher should have
// stored series records with the checkpoints index number, so we can now
// delete any ref ID's lower than that # from the two maps.
func (t *QueueManager) SeriesReset(index int) {
t.seriesMtx.Lock()
defer t.seriesMtx.Unlock()
// Check for series that are in segments older than the checkpoint
// that were not also present in the checkpoint.
for k, v := range t.seriesSegmentIndexes {
if v < index {
delete(t.seriesSegmentIndexes, k)
t.releaseLabels(t.seriesLabels[k])
delete(t.seriesLabels, k)
delete(t.droppedSeries, k)
}
}
}
// SetClient updates the client used by a queue. Used when only client specific
// fields are updated to avoid restarting the queue.
func (t *QueueManager) SetClient(c WriteClient) {
t.clientMtx.Lock()
t.storeClient = c
t.clientMtx.Unlock()
}
func (t *QueueManager) client() WriteClient {
t.clientMtx.RLock()
defer t.clientMtx.RUnlock()
return t.storeClient
}
func (t *QueueManager) internLabels(lbls labels.Labels) {
for i, l := range lbls {
lbls[i].Name = t.interner.intern(l.Name)
lbls[i].Value = t.interner.intern(l.Value)
}
}
func (t *QueueManager) releaseLabels(ls labels.Labels) {
for _, l := range ls {
t.interner.release(l.Name)
t.interner.release(l.Value)
}
}
// processExternalLabels merges externalLabels into ls. If ls contains
// a label in externalLabels, the value in ls wins.
func processExternalLabels(ls labels.Labels, externalLabels labels.Labels) labels.Labels {
i, j, result := 0, 0, make(labels.Labels, 0, len(ls)+len(externalLabels))
for i < len(ls) && j < len(externalLabels) {
if ls[i].Name < externalLabels[j].Name {
result = append(result, labels.Label{
Name: ls[i].Name,
Value: ls[i].Value,
})
i++
} else if ls[i].Name > externalLabels[j].Name {
result = append(result, externalLabels[j])
j++
} else {
result = append(result, labels.Label{
Name: ls[i].Name,
Value: ls[i].Value,
})
i++
j++
}
}
for ; i < len(ls); i++ {
result = append(result, labels.Label{
Name: ls[i].Name,
Value: ls[i].Value,
})
}
result = append(result, externalLabels[j:]...)
return result
}
func (t *QueueManager) updateShardsLoop() {
defer t.wg.Done()
ticker := time.NewTicker(shardUpdateDuration)
defer ticker.Stop()
for {
select {
case <-ticker.C:
desiredShards := t.calculateDesiredShards()
if !t.shouldReshard(desiredShards) {
continue
}
// Resharding can take some time, and we want this loop
// to stay close to shardUpdateDuration.
select {
case t.reshardChan <- desiredShards:
level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", desiredShards)
t.numShards = desiredShards
default:
level.Info(t.logger).Log("msg", "Currently resharding, skipping.")
}
case <-t.quit:
return
}
}
}
// shouldReshard returns if resharding should occur
func (t *QueueManager) shouldReshard(desiredShards int) bool {
if desiredShards == t.numShards {
return false
}
// We shouldn't reshard if Prometheus hasn't been able to send to the
// remote endpoint successfully within some period of time.
minSendTimestamp := time.Now().Add(-2 * time.Duration(t.cfg.BatchSendDeadline)).Unix()
lsts := t.lastSendTimestamp.Load()
if lsts < minSendTimestamp {
level.Warn(t.logger).Log("msg", "Skipping resharding, last successful send was beyond threshold", "lastSendTimestamp", lsts, "minSendTimestamp", minSendTimestamp)
return false
}
return true
}
// calculateDesiredShards returns the number of desired shards, which will be
// the current QueueManager.numShards if resharding should not occur for reasons
// outlined in this functions implementation. It is up to the caller to reshard, or not,
// based on the return value.
func (t *QueueManager) calculateDesiredShards() int {
t.samplesOut.tick()
t.samplesDropped.tick()
t.samplesOutDuration.tick()
// We use the number of incoming samples as a prediction of how much work we
// will need to do next iteration. We add to this any pending samples
// (received - send) so we can catch up with any backlog. We use the average
// outgoing batch latency to work out how many shards we need.
var (
samplesInRate = t.samplesIn.rate()
samplesOutRate = t.samplesOut.rate()
samplesKeptRatio = samplesOutRate / (t.samplesDropped.rate() + samplesOutRate)
samplesOutDuration = t.samplesOutDuration.rate() / float64(time.Second)
samplesPendingRate = samplesInRate*samplesKeptRatio - samplesOutRate
highestSent = t.metrics.highestSentTimestamp.Get()
highestRecv = t.highestRecvTimestamp.Get()
delay = highestRecv - highestSent
samplesPending = delay * samplesInRate * samplesKeptRatio
)
if samplesOutRate <= 0 {
return t.numShards
}
// When behind we will try to catch up on a proporation of samples per tick.
// This works similarly to an integral accumulator in that pending samples
// is the result of the error integral.
const integralGain = 0.1 / float64(shardUpdateDuration/time.Second)
var (
timePerSample = samplesOutDuration / samplesOutRate
desiredShards = timePerSample * (samplesInRate*samplesKeptRatio + integralGain*samplesPending)
)
t.metrics.desiredNumShards.Set(desiredShards)
level.Debug(t.logger).Log("msg", "QueueManager.calculateDesiredShards",
"samplesInRate", samplesInRate,
"samplesOutRate", samplesOutRate,
"samplesKeptRatio", samplesKeptRatio,
"samplesPendingRate", samplesPendingRate,
"samplesPending", samplesPending,
"samplesOutDuration", samplesOutDuration,
"timePerSample", timePerSample,
"desiredShards", desiredShards,
"highestSent", highestSent,
"highestRecv", highestRecv,
)
// Changes in the number of shards must be greater than shardToleranceFraction.
var (
lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
)
level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop",
"lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound)
if lowerBound <= desiredShards && desiredShards <= upperBound {
return t.numShards
}
numShards := int(math.Ceil(desiredShards))
// Do not downshard if we are more than ten seconds back.
if numShards < t.numShards && delay > 10.0 {
level.Debug(t.logger).Log("msg", "Not downsharding due to being too far behind")
return t.numShards
}
if numShards > t.cfg.MaxShards {
numShards = t.cfg.MaxShards
} else if numShards < t.cfg.MinShards {
numShards = t.cfg.MinShards
}
return numShards
}
func (t *QueueManager) reshardLoop() {
defer t.wg.Done()
for {
select {
case numShards := <-t.reshardChan:
// We start the newShards after we have stopped (the therefore completely
// flushed) the oldShards, to guarantee we only every deliver samples in
// order.
t.shards.stop()
t.shards.start(numShards)
case <-t.quit:
return
}
}
}
func (t *QueueManager) newShards() *shards {
s := &shards{
qm: t,
done: make(chan struct{}),
}
return s
}
type sample struct {
labels labels.Labels
t int64
v float64
}
type shards struct {
mtx sync.RWMutex // With the WAL, this is never actually contended.
qm *QueueManager
queues []chan sample
// Emulate a wait group with a channel and an atomic int, as you
// cannot select on a wait group.
done chan struct{}
running atomic.Int32
// Soft shutdown context will prevent new enqueues and deadlocks.
softShutdown chan struct{}
// Hard shutdown context is used to terminate outgoing HTTP connections
// after giving them a chance to terminate.
hardShutdown context.CancelFunc
droppedOnHardShutdown atomic.Uint32
}
// start the shards; must be called before any call to enqueue.
func (s *shards) start(n int) {
s.mtx.Lock()
defer s.mtx.Unlock()
s.qm.metrics.pendingSamples.Set(0)
s.qm.metrics.numShards.Set(float64(n))
newQueues := make([]chan sample, n)
for i := 0; i < n; i++ {
newQueues[i] = make(chan sample, s.qm.cfg.Capacity)
}
s.queues = newQueues
var hardShutdownCtx context.Context
hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background())
s.softShutdown = make(chan struct{})
s.running.Store(int32(n))
s.done = make(chan struct{})
s.droppedOnHardShutdown.Store(0)
for i := 0; i < n; i++ {
go s.runShard(hardShutdownCtx, i, newQueues[i])
}
}
// stop the shards; subsequent call to enqueue will return false.
func (s *shards) stop() {
// Attempt a clean shutdown, but only wait flushDeadline for all the shards
// to cleanly exit. As we're doing RPCs, enqueue can block indefinitely.
// We must be able so call stop concurrently, hence we can only take the
// RLock here.
s.mtx.RLock()
close(s.softShutdown)
s.mtx.RUnlock()
// Enqueue should now be unblocked, so we can take the write lock. This
// also ensures we don't race with writes to the queues, and get a panic:
// send on closed channel.
s.mtx.Lock()
defer s.mtx.Unlock()
for _, queue := range s.queues {
close(queue)
}
select {
case <-s.done:
return
case <-time.After(s.qm.flushDeadline):
}
// Force an unclean shutdown.
s.hardShutdown()
<-s.done
if dropped := s.droppedOnHardShutdown.Load(); dropped > 0 {
level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown", "count", dropped)
}
}
// enqueue a sample. If we are currently in the process of shutting down or resharding,
// will return false; in this case, you should back off and retry.
func (s *shards) enqueue(ref uint64, sample sample) bool {
s.mtx.RLock()
defer s.mtx.RUnlock()
select {
case <-s.softShutdown:
return false
default:
}
shard := uint64(ref) % uint64(len(s.queues))
select {
case <-s.softShutdown:
return false
case s.queues[shard] <- sample:
s.qm.metrics.pendingSamples.Inc()
return true
}
}
func (s *shards) runShard(ctx context.Context, shardID int, queue chan sample) {
defer func() {
if s.running.Dec() == 0 {
close(s.done)
}
}()
shardNum := strconv.Itoa(shardID)
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
// If we have fewer samples than that, flush them out after a deadline
// anyways.
var (
max = s.qm.cfg.MaxSamplesPerSend
nPending = 0
pendingSamples = allocateTimeSeries(max)
buf []byte
)
timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline))
stop := func() {
if !timer.Stop() {
select {
case <-timer.C:
default:
}
}
}
defer stop()
for {
select {
case <-ctx.Done():
// In this case we drop all samples in the buffer and the queue.
// Remove them from pending and mark them as failed.
droppedSamples := nPending + len(queue)
s.qm.metrics.pendingSamples.Sub(float64(droppedSamples))
s.qm.metrics.failedSamplesTotal.Add(float64(droppedSamples))
s.droppedOnHardShutdown.Add(uint32(droppedSamples))
return
case sample, ok := <-queue:
if !ok {
if nPending > 0 {
level.Debug(s.qm.logger).Log("msg", "Flushing samples to remote storage...", "count", nPending)
s.sendSamples(ctx, pendingSamples[:nPending], &buf)
s.qm.metrics.pendingSamples.Sub(float64(nPending))
level.Debug(s.qm.logger).Log("msg", "Done flushing.")
}
return
}
// Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff)
// retries endlessly, so once we reach max samples, if we can never send to the endpoint we'll
// stop reading from the queue. This makes it safe to reference pendingSamples by index.
pendingSamples[nPending].Labels = labelsToLabelsProto(sample.labels, pendingSamples[nPending].Labels)
pendingSamples[nPending].Samples[0].Timestamp = sample.t
pendingSamples[nPending].Samples[0].Value = sample.v
nPending++
if nPending >= max {
s.sendSamples(ctx, pendingSamples, &buf)
nPending = 0
s.qm.metrics.pendingSamples.Sub(float64(max))
stop()
timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
}
case <-timer.C:
if nPending > 0 {
level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending samples", "samples", nPending, "shard", shardNum)
s.sendSamples(ctx, pendingSamples[:nPending], &buf)
s.qm.metrics.pendingSamples.Sub(float64(nPending))
nPending = 0
}
timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
}
}
}
func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries, buf *[]byte) {
begin := time.Now()
err := s.sendSamplesWithBackoff(ctx, samples, buf)
if err != nil {
level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", len(samples), "err", err)
s.qm.metrics.failedSamplesTotal.Add(float64(len(samples)))
}
// These counters are used to calculate the dynamic sharding, and as such
// should be maintained irrespective of success or failure.
s.qm.samplesOut.incr(int64(len(samples)))
s.qm.samplesOutDuration.incr(int64(time.Since(begin)))
s.qm.lastSendTimestamp.Store(time.Now().Unix())
}
// sendSamples to the remote storage with backoff for recoverable errors.
func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries, buf *[]byte) error {
req, highest, err := buildWriteRequest(samples, *buf)
if err != nil {
// Failing to build the write request is non-recoverable, since it will
// only error if marshaling the proto to bytes fails.
return err
}
backoff := s.qm.cfg.MinBackoff
reqSize := len(*buf)
sampleCount := len(samples)
*buf = req
try := 0
// An anonymous function allows us to defer the completion of our per-try spans
// without causing a memory leak, and it has the nice effect of not propagating any
// parameters for sendSamplesWithBackoff/3.
attemptStore := func() error {
span, ctx := opentracing.StartSpanFromContext(ctx, "Remote Send Batch")
defer span.Finish()
span.SetTag("samples", sampleCount)
span.SetTag("request_size", reqSize)
span.SetTag("try", try)
span.SetTag("remote_name", s.qm.storeClient.Name())
span.SetTag("remote_url", s.qm.storeClient.Endpoint())
begin := time.Now()
err := s.qm.client().Store(ctx, *buf)
s.qm.metrics.sentBatchDuration.Observe(time.Since(begin).Seconds())
if err != nil {
span.LogKV("error", err)
ext.Error.Set(span, true)
return err
}
return nil
}
for {
select {
case <-ctx.Done():
return ctx.Err()
default:
}
err = attemptStore()
if err != nil {
// If the error is unrecoverable, we should not retry.
if _, ok := err.(RecoverableError); !ok {
return err
}
// If we make it this far, we've encountered a recoverable error and will retry.
s.qm.metrics.retriedSamplesTotal.Add(float64(sampleCount))
level.Warn(s.qm.logger).Log("msg", "Failed to send batch, retrying", "err", err)
time.Sleep(time.Duration(backoff))
backoff = backoff * 2
if backoff > s.qm.cfg.MaxBackoff {
backoff = s.qm.cfg.MaxBackoff
}
try++
continue
}
// Since we retry forever on recoverable errors, this needs to stay inside the loop.
s.qm.metrics.succeededSamplesTotal.Add(float64(sampleCount))
s.qm.metrics.bytesSent.Add(float64(reqSize))
s.qm.metrics.highestSentTimestamp.Set(float64(highest / 1000))
return nil
}
}
func buildWriteRequest(samples []prompb.TimeSeries, buf []byte) ([]byte, int64, error) {
var highest int64
for _, ts := range samples {
// At the moment we only ever append a TimeSeries with a single sample in it.
if ts.Samples[0].Timestamp > highest {
highest = ts.Samples[0].Timestamp
}
}
req := &prompb.WriteRequest{
Timeseries: samples,
}
data, err := proto.Marshal(req)
if err != nil {
return nil, highest, err
}
// snappy uses len() to see if it needs to allocate a new slice. Make the
// buffer as long as possible.
if buf != nil {
buf = buf[0:cap(buf)]
}
compressed := snappy.Encode(buf, data)
return compressed, highest, nil
}
func allocateTimeSeries(capacity int) []prompb.TimeSeries {
timeseries := make([]prompb.TimeSeries, capacity)
// We only ever send one sample per timeseries, so preallocate with length one.
for i := range timeseries {
timeseries[i].Samples = []prompb.Sample{{}}
}
return timeseries
}