mirror of https://github.com/prometheus/prometheus
940 lines
23 KiB
Go
940 lines
23 KiB
Go
// Copyright 2017 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package index
|
|
|
|
import (
|
|
"container/heap"
|
|
"context"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math"
|
|
"runtime"
|
|
"slices"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/bboreham/go-loser"
|
|
|
|
"github.com/prometheus/prometheus/model/labels"
|
|
"github.com/prometheus/prometheus/storage"
|
|
)
|
|
|
|
var allPostingsKey = labels.Label{}
|
|
|
|
// AllPostingsKey returns the label key that is used to store the postings list of all existing IDs.
|
|
func AllPostingsKey() (name, value string) {
|
|
return allPostingsKey.Name, allPostingsKey.Value
|
|
}
|
|
|
|
// ensureOrderBatchSize is the max number of postings passed to a worker in a single batch in MemPostings.EnsureOrder().
|
|
const ensureOrderBatchSize = 1024
|
|
|
|
// ensureOrderBatchPool is a pool used to recycle batches passed to workers in MemPostings.EnsureOrder().
|
|
var ensureOrderBatchPool = sync.Pool{
|
|
New: func() interface{} {
|
|
x := make([][]storage.SeriesRef, 0, ensureOrderBatchSize)
|
|
return &x // Return pointer type as preferred by Pool.
|
|
},
|
|
}
|
|
|
|
// MemPostings holds postings list for series ID per label pair. They may be written
|
|
// to out of order.
|
|
// EnsureOrder() must be called once before any reads are done. This allows for quick
|
|
// unordered batch fills on startup.
|
|
type MemPostings struct {
|
|
mtx sync.RWMutex
|
|
m map[string]map[string][]storage.SeriesRef
|
|
ordered bool
|
|
}
|
|
|
|
// NewMemPostings returns a memPostings that's ready for reads and writes.
|
|
func NewMemPostings() *MemPostings {
|
|
return &MemPostings{
|
|
m: make(map[string]map[string][]storage.SeriesRef, 512),
|
|
ordered: true,
|
|
}
|
|
}
|
|
|
|
// NewUnorderedMemPostings returns a memPostings that is not safe to be read from
|
|
// until EnsureOrder() was called once.
|
|
func NewUnorderedMemPostings() *MemPostings {
|
|
return &MemPostings{
|
|
m: make(map[string]map[string][]storage.SeriesRef, 512),
|
|
ordered: false,
|
|
}
|
|
}
|
|
|
|
// Symbols returns an iterator over all unique name and value strings, in order.
|
|
func (p *MemPostings) Symbols() StringIter {
|
|
p.mtx.RLock()
|
|
|
|
// Add all the strings to a map to de-duplicate.
|
|
symbols := make(map[string]struct{}, 512)
|
|
for n, e := range p.m {
|
|
symbols[n] = struct{}{}
|
|
for v := range e {
|
|
symbols[v] = struct{}{}
|
|
}
|
|
}
|
|
p.mtx.RUnlock()
|
|
|
|
res := make([]string, 0, len(symbols))
|
|
for k := range symbols {
|
|
res = append(res, k)
|
|
}
|
|
|
|
slices.Sort(res)
|
|
return NewStringListIter(res)
|
|
}
|
|
|
|
// SortedKeys returns a list of sorted label keys of the postings.
|
|
func (p *MemPostings) SortedKeys() []labels.Label {
|
|
p.mtx.RLock()
|
|
keys := make([]labels.Label, 0, len(p.m))
|
|
|
|
for n, e := range p.m {
|
|
for v := range e {
|
|
keys = append(keys, labels.Label{Name: n, Value: v})
|
|
}
|
|
}
|
|
p.mtx.RUnlock()
|
|
|
|
slices.SortFunc(keys, func(a, b labels.Label) int {
|
|
nameCompare := strings.Compare(a.Name, b.Name)
|
|
// If names are the same, compare values.
|
|
if nameCompare != 0 {
|
|
return nameCompare
|
|
}
|
|
|
|
return strings.Compare(a.Value, b.Value)
|
|
})
|
|
return keys
|
|
}
|
|
|
|
// LabelNames returns all the unique label names.
|
|
func (p *MemPostings) LabelNames() []string {
|
|
p.mtx.RLock()
|
|
defer p.mtx.RUnlock()
|
|
n := len(p.m)
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
|
|
names := make([]string, 0, n-1)
|
|
for name := range p.m {
|
|
if name != allPostingsKey.Name {
|
|
names = append(names, name)
|
|
}
|
|
}
|
|
return names
|
|
}
|
|
|
|
// LabelValues returns label values for the given name.
|
|
func (p *MemPostings) LabelValues(_ context.Context, name string) []string {
|
|
p.mtx.RLock()
|
|
defer p.mtx.RUnlock()
|
|
|
|
values := make([]string, 0, len(p.m[name]))
|
|
for v := range p.m[name] {
|
|
values = append(values, v)
|
|
}
|
|
return values
|
|
}
|
|
|
|
// PostingsStats contains cardinality based statistics for postings.
|
|
type PostingsStats struct {
|
|
CardinalityMetricsStats []Stat
|
|
CardinalityLabelStats []Stat
|
|
LabelValueStats []Stat
|
|
LabelValuePairsStats []Stat
|
|
NumLabelPairs int
|
|
}
|
|
|
|
// Stats calculates the cardinality statistics from postings.
|
|
func (p *MemPostings) Stats(label string, limit int) *PostingsStats {
|
|
var size uint64
|
|
p.mtx.RLock()
|
|
|
|
metrics := &maxHeap{}
|
|
labels := &maxHeap{}
|
|
labelValueLength := &maxHeap{}
|
|
labelValuePairs := &maxHeap{}
|
|
numLabelPairs := 0
|
|
|
|
metrics.init(limit)
|
|
labels.init(limit)
|
|
labelValueLength.init(limit)
|
|
labelValuePairs.init(limit)
|
|
|
|
for n, e := range p.m {
|
|
if n == "" {
|
|
continue
|
|
}
|
|
labels.push(Stat{Name: n, Count: uint64(len(e))})
|
|
numLabelPairs += len(e)
|
|
size = 0
|
|
for name, values := range e {
|
|
if n == label {
|
|
metrics.push(Stat{Name: name, Count: uint64(len(values))})
|
|
}
|
|
seriesCnt := uint64(len(values))
|
|
labelValuePairs.push(Stat{Name: n + "=" + name, Count: seriesCnt})
|
|
size += uint64(len(name)) * seriesCnt
|
|
}
|
|
labelValueLength.push(Stat{Name: n, Count: size})
|
|
}
|
|
|
|
p.mtx.RUnlock()
|
|
|
|
return &PostingsStats{
|
|
CardinalityMetricsStats: metrics.get(),
|
|
CardinalityLabelStats: labels.get(),
|
|
LabelValueStats: labelValueLength.get(),
|
|
LabelValuePairsStats: labelValuePairs.get(),
|
|
NumLabelPairs: numLabelPairs,
|
|
}
|
|
}
|
|
|
|
// Get returns a postings list for the given label pair.
|
|
func (p *MemPostings) Get(name, value string) Postings {
|
|
var lp []storage.SeriesRef
|
|
p.mtx.RLock()
|
|
l := p.m[name]
|
|
if l != nil {
|
|
lp = l[value]
|
|
}
|
|
p.mtx.RUnlock()
|
|
|
|
if lp == nil {
|
|
return EmptyPostings()
|
|
}
|
|
return newListPostings(lp...)
|
|
}
|
|
|
|
// All returns a postings list over all documents ever added.
|
|
func (p *MemPostings) All() Postings {
|
|
return p.Get(AllPostingsKey())
|
|
}
|
|
|
|
// EnsureOrder ensures that all postings lists are sorted. After it returns all further
|
|
// calls to add and addFor will insert new IDs in a sorted manner.
|
|
// Parameter numberOfConcurrentProcesses is used to specify the maximal number of
|
|
// CPU cores used for this operation. If it is <= 0, GOMAXPROCS is used.
|
|
// GOMAXPROCS was the default before introducing this parameter.
|
|
func (p *MemPostings) EnsureOrder(numberOfConcurrentProcesses int) {
|
|
p.mtx.Lock()
|
|
defer p.mtx.Unlock()
|
|
|
|
if p.ordered {
|
|
return
|
|
}
|
|
|
|
concurrency := numberOfConcurrentProcesses
|
|
if concurrency <= 0 {
|
|
concurrency = runtime.GOMAXPROCS(0)
|
|
}
|
|
workc := make(chan *[][]storage.SeriesRef)
|
|
|
|
var wg sync.WaitGroup
|
|
wg.Add(concurrency)
|
|
|
|
for i := 0; i < concurrency; i++ {
|
|
go func() {
|
|
for job := range workc {
|
|
for _, l := range *job {
|
|
slices.Sort(l)
|
|
}
|
|
|
|
*job = (*job)[:0]
|
|
ensureOrderBatchPool.Put(job)
|
|
}
|
|
wg.Done()
|
|
}()
|
|
}
|
|
|
|
nextJob := ensureOrderBatchPool.Get().(*[][]storage.SeriesRef)
|
|
for _, e := range p.m {
|
|
for _, l := range e {
|
|
*nextJob = append(*nextJob, l)
|
|
|
|
if len(*nextJob) >= ensureOrderBatchSize {
|
|
workc <- nextJob
|
|
nextJob = ensureOrderBatchPool.Get().(*[][]storage.SeriesRef)
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the last job was partially filled, we need to push it to workers too.
|
|
if len(*nextJob) > 0 {
|
|
workc <- nextJob
|
|
}
|
|
|
|
close(workc)
|
|
wg.Wait()
|
|
|
|
p.ordered = true
|
|
}
|
|
|
|
// Delete removes all ids in the given map from the postings lists.
|
|
// affectedLabels contains all the labels that are affected by the deletion, there's no need to check other labels.
|
|
func (p *MemPostings) Delete(deleted map[storage.SeriesRef]struct{}, affected map[labels.Label]struct{}) {
|
|
p.mtx.Lock()
|
|
defer p.mtx.Unlock()
|
|
|
|
process := func(l labels.Label) {
|
|
orig := p.m[l.Name][l.Value]
|
|
repl := make([]storage.SeriesRef, 0, len(orig))
|
|
for _, id := range orig {
|
|
if _, ok := deleted[id]; !ok {
|
|
repl = append(repl, id)
|
|
}
|
|
}
|
|
if len(repl) > 0 {
|
|
p.m[l.Name][l.Value] = repl
|
|
} else {
|
|
delete(p.m[l.Name], l.Value)
|
|
// Delete the key if we removed all values.
|
|
if len(p.m[l.Name]) == 0 {
|
|
delete(p.m, l.Name)
|
|
}
|
|
}
|
|
}
|
|
|
|
for l := range affected {
|
|
process(l)
|
|
}
|
|
process(allPostingsKey)
|
|
}
|
|
|
|
// Iter calls f for each postings list. It aborts if f returns an error and returns it.
|
|
func (p *MemPostings) Iter(f func(labels.Label, Postings) error) error {
|
|
p.mtx.RLock()
|
|
defer p.mtx.RUnlock()
|
|
|
|
for n, e := range p.m {
|
|
for v, p := range e {
|
|
if err := f(labels.Label{Name: n, Value: v}, newListPostings(p...)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Add a label set to the postings index.
|
|
func (p *MemPostings) Add(id storage.SeriesRef, lset labels.Labels) {
|
|
p.mtx.Lock()
|
|
|
|
lset.Range(func(l labels.Label) {
|
|
p.addFor(id, l)
|
|
})
|
|
p.addFor(id, allPostingsKey)
|
|
|
|
p.mtx.Unlock()
|
|
}
|
|
|
|
func (p *MemPostings) addFor(id storage.SeriesRef, l labels.Label) {
|
|
nm, ok := p.m[l.Name]
|
|
if !ok {
|
|
nm = map[string][]storage.SeriesRef{}
|
|
p.m[l.Name] = nm
|
|
}
|
|
list := append(nm[l.Value], id)
|
|
nm[l.Value] = list
|
|
|
|
if !p.ordered {
|
|
return
|
|
}
|
|
// There is no guarantee that no higher ID was inserted before as they may
|
|
// be generated independently before adding them to postings.
|
|
// We repair order violations on insert. The invariant is that the first n-1
|
|
// items in the list are already sorted.
|
|
for i := len(list) - 1; i >= 1; i-- {
|
|
if list[i] >= list[i-1] {
|
|
break
|
|
}
|
|
list[i], list[i-1] = list[i-1], list[i]
|
|
}
|
|
}
|
|
|
|
func (p *MemPostings) PostingsForLabelMatching(ctx context.Context, name string, match func(string) bool) Postings {
|
|
// We'll copy the values into a slice and then match over that,
|
|
// this way we don't need to hold the mutex while we're matching,
|
|
// which can be slow (seconds) if the match function is a huge regex.
|
|
// Holding this lock prevents new series from being added (slows down the write path)
|
|
// and blocks the compaction process.
|
|
vals := p.labelValues(name)
|
|
for i, count := 0, 1; i < len(vals); count++ {
|
|
if count%checkContextEveryNIterations == 0 && ctx.Err() != nil {
|
|
return ErrPostings(ctx.Err())
|
|
}
|
|
|
|
if match(vals[i]) {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Didn't match, bring the last value to this position, make the slice shorter and check again.
|
|
// The order of the slice doesn't matter as it comes from a map iteration.
|
|
vals[i], vals = vals[len(vals)-1], vals[:len(vals)-1]
|
|
}
|
|
|
|
// If none matched (or this label had no values), no need to grab the lock again.
|
|
if len(vals) == 0 {
|
|
return EmptyPostings()
|
|
}
|
|
|
|
// Now `vals` only contains the values that matched, get their postings.
|
|
its := make([]Postings, 0, len(vals))
|
|
p.mtx.RLock()
|
|
e := p.m[name]
|
|
for _, v := range vals {
|
|
if refs, ok := e[v]; ok {
|
|
// Some of the values may have been garbage-collected in the meantime this is fine, we'll just skip them.
|
|
// If we didn't let the mutex go, we'd have these postings here, but they would be pointing nowhere
|
|
// because there would be a `MemPostings.Delete()` call waiting for the lock to delete these labels,
|
|
// because the series were deleted already.
|
|
its = append(its, NewListPostings(refs))
|
|
}
|
|
}
|
|
// Let the mutex go before merging.
|
|
p.mtx.RUnlock()
|
|
|
|
return Merge(ctx, its...)
|
|
}
|
|
|
|
// labelValues returns a slice of label values for the given label name.
|
|
// It will take the read lock.
|
|
func (p *MemPostings) labelValues(name string) []string {
|
|
p.mtx.RLock()
|
|
defer p.mtx.RUnlock()
|
|
|
|
e := p.m[name]
|
|
if len(e) == 0 {
|
|
return nil
|
|
}
|
|
|
|
vals := make([]string, 0, len(e))
|
|
for v, srs := range e {
|
|
if len(srs) > 0 {
|
|
vals = append(vals, v)
|
|
}
|
|
}
|
|
|
|
return vals
|
|
}
|
|
|
|
// ExpandPostings returns the postings expanded as a slice.
|
|
func ExpandPostings(p Postings) (res []storage.SeriesRef, err error) {
|
|
for p.Next() {
|
|
res = append(res, p.At())
|
|
}
|
|
return res, p.Err()
|
|
}
|
|
|
|
// Postings provides iterative access over a postings list.
|
|
type Postings interface {
|
|
// Next advances the iterator and returns true if another value was found.
|
|
Next() bool
|
|
|
|
// Seek advances the iterator to value v or greater and returns
|
|
// true if a value was found.
|
|
Seek(v storage.SeriesRef) bool
|
|
|
|
// At returns the value at the current iterator position.
|
|
// At should only be called after a successful call to Next or Seek.
|
|
At() storage.SeriesRef
|
|
|
|
// Err returns the last error of the iterator.
|
|
Err() error
|
|
}
|
|
|
|
// errPostings is an empty iterator that always errors.
|
|
type errPostings struct {
|
|
err error
|
|
}
|
|
|
|
func (e errPostings) Next() bool { return false }
|
|
func (e errPostings) Seek(storage.SeriesRef) bool { return false }
|
|
func (e errPostings) At() storage.SeriesRef { return 0 }
|
|
func (e errPostings) Err() error { return e.err }
|
|
|
|
var emptyPostings = errPostings{}
|
|
|
|
// EmptyPostings returns a postings list that's always empty.
|
|
// NOTE: Returning EmptyPostings sentinel when Postings struct has no postings is recommended.
|
|
// It triggers optimized flow in other functions like Intersect, Without etc.
|
|
func EmptyPostings() Postings {
|
|
return emptyPostings
|
|
}
|
|
|
|
// IsEmptyPostingsType returns true if the postings are an empty postings list.
|
|
// When this function returns false, it doesn't mean that the postings isn't empty
|
|
// (it could be an empty intersection of two non-empty postings, for example).
|
|
func IsEmptyPostingsType(p Postings) bool {
|
|
return p == emptyPostings
|
|
}
|
|
|
|
// ErrPostings returns new postings that immediately error.
|
|
func ErrPostings(err error) Postings {
|
|
return errPostings{err}
|
|
}
|
|
|
|
// Intersect returns a new postings list over the intersection of the
|
|
// input postings.
|
|
func Intersect(its ...Postings) Postings {
|
|
if len(its) == 0 {
|
|
return EmptyPostings()
|
|
}
|
|
if len(its) == 1 {
|
|
return its[0]
|
|
}
|
|
for _, p := range its {
|
|
if p == EmptyPostings() {
|
|
return EmptyPostings()
|
|
}
|
|
}
|
|
|
|
return newIntersectPostings(its...)
|
|
}
|
|
|
|
type intersectPostings struct {
|
|
arr []Postings
|
|
cur storage.SeriesRef
|
|
}
|
|
|
|
func newIntersectPostings(its ...Postings) *intersectPostings {
|
|
return &intersectPostings{arr: its}
|
|
}
|
|
|
|
func (it *intersectPostings) At() storage.SeriesRef {
|
|
return it.cur
|
|
}
|
|
|
|
func (it *intersectPostings) doNext() bool {
|
|
Loop:
|
|
for {
|
|
for _, p := range it.arr {
|
|
if !p.Seek(it.cur) {
|
|
return false
|
|
}
|
|
if p.At() > it.cur {
|
|
it.cur = p.At()
|
|
continue Loop
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
}
|
|
|
|
func (it *intersectPostings) Next() bool {
|
|
for _, p := range it.arr {
|
|
if !p.Next() {
|
|
return false
|
|
}
|
|
if p.At() > it.cur {
|
|
it.cur = p.At()
|
|
}
|
|
}
|
|
return it.doNext()
|
|
}
|
|
|
|
func (it *intersectPostings) Seek(id storage.SeriesRef) bool {
|
|
it.cur = id
|
|
return it.doNext()
|
|
}
|
|
|
|
func (it *intersectPostings) Err() error {
|
|
for _, p := range it.arr {
|
|
if p.Err() != nil {
|
|
return p.Err()
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Merge returns a new iterator over the union of the input iterators.
|
|
func Merge(_ context.Context, its ...Postings) Postings {
|
|
if len(its) == 0 {
|
|
return EmptyPostings()
|
|
}
|
|
if len(its) == 1 {
|
|
return its[0]
|
|
}
|
|
|
|
p, ok := newMergedPostings(its)
|
|
if !ok {
|
|
return EmptyPostings()
|
|
}
|
|
return p
|
|
}
|
|
|
|
type mergedPostings struct {
|
|
p []Postings
|
|
h *loser.Tree[storage.SeriesRef, Postings]
|
|
cur storage.SeriesRef
|
|
}
|
|
|
|
func newMergedPostings(p []Postings) (m *mergedPostings, nonEmpty bool) {
|
|
const maxVal = storage.SeriesRef(math.MaxUint64) // This value must be higher than all real values used in the tree.
|
|
lt := loser.New(p, maxVal)
|
|
return &mergedPostings{p: p, h: lt}, true
|
|
}
|
|
|
|
func (it *mergedPostings) Next() bool {
|
|
for {
|
|
if !it.h.Next() {
|
|
return false
|
|
}
|
|
// Remove duplicate entries.
|
|
newItem := it.h.At()
|
|
if newItem != it.cur {
|
|
it.cur = newItem
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
|
|
func (it *mergedPostings) Seek(id storage.SeriesRef) bool {
|
|
for !it.h.IsEmpty() && it.h.At() < id {
|
|
finished := !it.h.Winner().Seek(id)
|
|
it.h.Fix(finished)
|
|
}
|
|
if it.h.IsEmpty() {
|
|
return false
|
|
}
|
|
it.cur = it.h.At()
|
|
return true
|
|
}
|
|
|
|
func (it mergedPostings) At() storage.SeriesRef {
|
|
return it.cur
|
|
}
|
|
|
|
func (it mergedPostings) Err() error {
|
|
for _, p := range it.p {
|
|
if err := p.Err(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Without returns a new postings list that contains all elements from the full list that
|
|
// are not in the drop list.
|
|
func Without(full, drop Postings) Postings {
|
|
if full == EmptyPostings() {
|
|
return EmptyPostings()
|
|
}
|
|
|
|
if drop == EmptyPostings() {
|
|
return full
|
|
}
|
|
return newRemovedPostings(full, drop)
|
|
}
|
|
|
|
type removedPostings struct {
|
|
full, remove Postings
|
|
|
|
cur storage.SeriesRef
|
|
|
|
initialized bool
|
|
fok, rok bool
|
|
}
|
|
|
|
func newRemovedPostings(full, remove Postings) *removedPostings {
|
|
return &removedPostings{
|
|
full: full,
|
|
remove: remove,
|
|
}
|
|
}
|
|
|
|
func (rp *removedPostings) At() storage.SeriesRef {
|
|
return rp.cur
|
|
}
|
|
|
|
func (rp *removedPostings) Next() bool {
|
|
if !rp.initialized {
|
|
rp.fok = rp.full.Next()
|
|
rp.rok = rp.remove.Next()
|
|
rp.initialized = true
|
|
}
|
|
for {
|
|
if !rp.fok {
|
|
return false
|
|
}
|
|
|
|
if !rp.rok {
|
|
rp.cur = rp.full.At()
|
|
rp.fok = rp.full.Next()
|
|
return true
|
|
}
|
|
switch fcur, rcur := rp.full.At(), rp.remove.At(); {
|
|
case fcur < rcur:
|
|
rp.cur = fcur
|
|
rp.fok = rp.full.Next()
|
|
|
|
return true
|
|
case rcur < fcur:
|
|
// Forward the remove postings to the right position.
|
|
rp.rok = rp.remove.Seek(fcur)
|
|
default:
|
|
// Skip the current posting.
|
|
rp.fok = rp.full.Next()
|
|
}
|
|
}
|
|
}
|
|
|
|
func (rp *removedPostings) Seek(id storage.SeriesRef) bool {
|
|
if rp.cur >= id {
|
|
return true
|
|
}
|
|
|
|
rp.fok = rp.full.Seek(id)
|
|
rp.rok = rp.remove.Seek(id)
|
|
rp.initialized = true
|
|
|
|
return rp.Next()
|
|
}
|
|
|
|
func (rp *removedPostings) Err() error {
|
|
if rp.full.Err() != nil {
|
|
return rp.full.Err()
|
|
}
|
|
|
|
return rp.remove.Err()
|
|
}
|
|
|
|
// ListPostings implements the Postings interface over a plain list.
|
|
type ListPostings struct {
|
|
list []storage.SeriesRef
|
|
cur storage.SeriesRef
|
|
}
|
|
|
|
func NewListPostings(list []storage.SeriesRef) Postings {
|
|
return newListPostings(list...)
|
|
}
|
|
|
|
func newListPostings(list ...storage.SeriesRef) *ListPostings {
|
|
return &ListPostings{list: list}
|
|
}
|
|
|
|
func (it *ListPostings) At() storage.SeriesRef {
|
|
return it.cur
|
|
}
|
|
|
|
func (it *ListPostings) Next() bool {
|
|
if len(it.list) > 0 {
|
|
it.cur = it.list[0]
|
|
it.list = it.list[1:]
|
|
return true
|
|
}
|
|
it.cur = 0
|
|
return false
|
|
}
|
|
|
|
func (it *ListPostings) Seek(x storage.SeriesRef) bool {
|
|
// If the current value satisfies, then return.
|
|
if it.cur >= x {
|
|
return true
|
|
}
|
|
if len(it.list) == 0 {
|
|
return false
|
|
}
|
|
|
|
// Do binary search between current position and end.
|
|
i := sort.Search(len(it.list), func(i int) bool {
|
|
return it.list[i] >= x
|
|
})
|
|
if i < len(it.list) {
|
|
it.cur = it.list[i]
|
|
it.list = it.list[i+1:]
|
|
return true
|
|
}
|
|
it.list = nil
|
|
return false
|
|
}
|
|
|
|
func (it *ListPostings) Err() error {
|
|
return nil
|
|
}
|
|
|
|
// bigEndianPostings implements the Postings interface over a byte stream of
|
|
// big endian numbers.
|
|
type bigEndianPostings struct {
|
|
list []byte
|
|
cur uint32
|
|
}
|
|
|
|
func newBigEndianPostings(list []byte) *bigEndianPostings {
|
|
return &bigEndianPostings{list: list}
|
|
}
|
|
|
|
func (it *bigEndianPostings) At() storage.SeriesRef {
|
|
return storage.SeriesRef(it.cur)
|
|
}
|
|
|
|
func (it *bigEndianPostings) Next() bool {
|
|
if len(it.list) >= 4 {
|
|
it.cur = binary.BigEndian.Uint32(it.list)
|
|
it.list = it.list[4:]
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (it *bigEndianPostings) Seek(x storage.SeriesRef) bool {
|
|
if storage.SeriesRef(it.cur) >= x {
|
|
return true
|
|
}
|
|
|
|
num := len(it.list) / 4
|
|
// Do binary search between current position and end.
|
|
i := sort.Search(num, func(i int) bool {
|
|
return binary.BigEndian.Uint32(it.list[i*4:]) >= uint32(x)
|
|
})
|
|
if i < num {
|
|
j := i * 4
|
|
it.cur = binary.BigEndian.Uint32(it.list[j:])
|
|
it.list = it.list[j+4:]
|
|
return true
|
|
}
|
|
it.list = nil
|
|
return false
|
|
}
|
|
|
|
func (it *bigEndianPostings) Err() error {
|
|
return nil
|
|
}
|
|
|
|
// FindIntersectingPostings checks the intersection of p and candidates[i] for each i in candidates,
|
|
// if intersection is non empty, then i is added to the indexes returned.
|
|
// Returned indexes are not sorted.
|
|
func FindIntersectingPostings(p Postings, candidates []Postings) (indexes []int, err error) {
|
|
h := make(postingsWithIndexHeap, 0, len(candidates))
|
|
for idx, it := range candidates {
|
|
switch {
|
|
case it.Next():
|
|
h = append(h, postingsWithIndex{index: idx, p: it})
|
|
case it.Err() != nil:
|
|
return nil, it.Err()
|
|
}
|
|
}
|
|
if h.empty() {
|
|
return nil, nil
|
|
}
|
|
heap.Init(&h)
|
|
|
|
for !h.empty() {
|
|
if !p.Seek(h.at()) {
|
|
return indexes, p.Err()
|
|
}
|
|
if p.At() == h.at() {
|
|
indexes = append(indexes, h.popIndex())
|
|
} else if err := h.next(); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
return indexes, nil
|
|
}
|
|
|
|
// postingsWithIndex is used as postingsWithIndexHeap elements by FindIntersectingPostings,
|
|
// keeping track of the original index of each postings while they move inside the heap.
|
|
type postingsWithIndex struct {
|
|
index int
|
|
p Postings
|
|
// popped means that these postings shouldn't be considered anymore.
|
|
// See popIndex() comment to understand why we need this.
|
|
popped bool
|
|
}
|
|
|
|
// postingsWithIndexHeap implements heap.Interface,
|
|
// with root always pointing to the postings with minimum Postings.At() value.
|
|
// It also implements a special way of removing elements that marks them as popped and moves them to the bottom of the
|
|
// heap instead of actually removing them, see popIndex() for more details.
|
|
type postingsWithIndexHeap []postingsWithIndex
|
|
|
|
// empty checks whether the heap is empty, which is true if it has no elements, of if the smallest element is popped.
|
|
func (h *postingsWithIndexHeap) empty() bool {
|
|
return len(*h) == 0 || (*h)[0].popped
|
|
}
|
|
|
|
// popIndex pops the smallest heap element and returns its index.
|
|
// In our implementation we don't actually do heap.Pop(), instead we mark the element as `popped` and fix its position, which
|
|
// should be after all the non-popped elements according to our sorting strategy.
|
|
// By skipping the `heap.Pop()` call we avoid an extra allocation in this heap's Pop() implementation which returns an interface{}.
|
|
func (h *postingsWithIndexHeap) popIndex() int {
|
|
index := (*h)[0].index
|
|
(*h)[0].popped = true
|
|
heap.Fix(h, 0)
|
|
return index
|
|
}
|
|
|
|
// at provides the storage.SeriesRef where root Postings is pointing at this moment.
|
|
func (h postingsWithIndexHeap) at() storage.SeriesRef { return h[0].p.At() }
|
|
|
|
// next performs the Postings.Next() operation on the root of the heap, performing the related operation on the heap
|
|
// and conveniently returning the result of calling Postings.Err() if the result of calling Next() was false.
|
|
// If Next() succeeds, heap is fixed to move the root to its new position, according to its Postings.At() value.
|
|
// If Next() returns fails and there's no error reported by Postings.Err(), then root is marked as removed and heap is fixed.
|
|
func (h *postingsWithIndexHeap) next() error {
|
|
pi := (*h)[0]
|
|
next := pi.p.Next()
|
|
if next {
|
|
heap.Fix(h, 0)
|
|
return nil
|
|
}
|
|
|
|
if err := pi.p.Err(); err != nil {
|
|
return fmt.Errorf("postings %d: %w", pi.index, err)
|
|
}
|
|
h.popIndex()
|
|
return nil
|
|
}
|
|
|
|
// Len implements heap.Interface.
|
|
// Notice that Len() > 0 does not imply that heap is not empty as elements are not removed from this heap.
|
|
// Use empty() to check whether heap is empty or not.
|
|
func (h postingsWithIndexHeap) Len() int { return len(h) }
|
|
|
|
// Less implements heap.Interface, it puts all the popped elements at the bottom,
|
|
// and then sorts by Postings.At() property of each node.
|
|
func (h postingsWithIndexHeap) Less(i, j int) bool {
|
|
if h[i].popped != h[j].popped {
|
|
return h[j].popped
|
|
}
|
|
return h[i].p.At() < h[j].p.At()
|
|
}
|
|
|
|
// Swap implements heap.Interface.
|
|
func (h *postingsWithIndexHeap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] }
|
|
|
|
// Push implements heap.Interface.
|
|
func (h *postingsWithIndexHeap) Push(x interface{}) {
|
|
*h = append(*h, x.(postingsWithIndex))
|
|
}
|
|
|
|
// Pop implements heap.Interface and pops the last element, which is NOT the min element,
|
|
// so this doesn't return the same heap.Pop()
|
|
// Although this method is implemented for correctness, we don't expect it to be used, see popIndex() method for details.
|
|
func (h *postingsWithIndexHeap) Pop() interface{} {
|
|
old := *h
|
|
n := len(old)
|
|
x := old[n-1]
|
|
*h = old[0 : n-1]
|
|
return x
|
|
}
|