You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/tsdb/db.go

2221 lines
67 KiB

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tsdb implements a time series storage for float64 sample data.
package tsdb
import (
"context"
"errors"
"fmt"
"io"
"io/fs"
"math"
"os"
"path/filepath"
"slices"
"strings"
"sync"
"time"
"github.com/go-kit/log"
"github.com/go-kit/log/level"
"github.com/oklog/ulid"
"github.com/prometheus/client_golang/prometheus"
"go.uber.org/atomic"
"golang.org/x/sync/errgroup"
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
"github.com/prometheus/prometheus/tsdb/fileutil"
_ "github.com/prometheus/prometheus/tsdb/goversion" // Load the package into main to make sure minimum Go version is met.
"github.com/prometheus/prometheus/tsdb/tsdbutil"
"github.com/prometheus/prometheus/tsdb/wlog"
)
const (
// Default duration of a block in milliseconds.
DefaultBlockDuration = int64(2 * time.Hour / time.Millisecond)
// Block dir suffixes to make deletion and creation operations atomic.
// We decided to do suffixes instead of creating meta.json as last (or delete as first) one,
// because in error case you still can recover meta.json from the block content within local TSDB dir.
// TODO(bwplotka): TSDB can end up with various .tmp files (e.g meta.json.tmp, WAL or segment tmp file. Think
// about removing those too on start to save space. Currently only blocks tmp dirs are removed.
tmpForDeletionBlockDirSuffix = ".tmp-for-deletion"
tmpForCreationBlockDirSuffix = ".tmp-for-creation"
// Pre-2.21 tmp dir suffix, used in clean-up functions.
tmpLegacy = ".tmp"
)
// ErrNotReady is returned if the underlying storage is not ready yet.
var ErrNotReady = errors.New("TSDB not ready")
// DefaultOptions used for the DB. They are reasonable for setups using
// millisecond precision timestamps.
func DefaultOptions() *Options {
return &Options{
WALSegmentSize: wlog.DefaultSegmentSize,
MaxBlockChunkSegmentSize: chunks.DefaultChunkSegmentSize,
RetentionDuration: int64(15 * 24 * time.Hour / time.Millisecond),
MinBlockDuration: DefaultBlockDuration,
MaxBlockDuration: DefaultBlockDuration,
NoLockfile: false,
SamplesPerChunk: DefaultSamplesPerChunk,
WALCompression: wlog.CompressionNone,
StripeSize: DefaultStripeSize,
HeadChunksWriteBufferSize: chunks.DefaultWriteBufferSize,
IsolationDisabled: defaultIsolationDisabled,
HeadChunksWriteQueueSize: chunks.DefaultWriteQueueSize,
OutOfOrderCapMax: DefaultOutOfOrderCapMax,
EnableOverlappingCompaction: true,
EnableSharding: false,
}
}
// Options of the DB storage.
type Options struct {
// Segments (wal files) max size.
// WALSegmentSize = 0, segment size is default size.
// WALSegmentSize > 0, segment size is WALSegmentSize.
// WALSegmentSize < 0, wal is disabled.
WALSegmentSize int
// MaxBlockChunkSegmentSize is the max size of block chunk segment files.
// MaxBlockChunkSegmentSize = 0, chunk segment size is default size.
// MaxBlockChunkSegmentSize > 0, chunk segment size is MaxBlockChunkSegmentSize.
MaxBlockChunkSegmentSize int64
// Duration of persisted data to keep.
// Unit agnostic as long as unit is consistent with MinBlockDuration and MaxBlockDuration.
// Typically it is in milliseconds.
RetentionDuration int64
// Maximum number of bytes in blocks to be retained.
// 0 or less means disabled.
// NOTE: For proper storage calculations need to consider
// the size of the WAL folder which is not added when calculating
// the current size of the database.
MaxBytes int64
// NoLockfile disables creation and consideration of a lock file.
NoLockfile bool
// WALCompression configures the compression type to use on records in the WAL.
WALCompression wlog.CompressionType
// Maximum number of CPUs that can simultaneously processes WAL replay.
// If it is <=0, then GOMAXPROCS is used.
WALReplayConcurrency int
// StripeSize is the size in entries of the series hash map. Reducing the size will save memory but impact performance.
StripeSize int
// The timestamp range of head blocks after which they get persisted.
// It's the minimum duration of any persisted block.
// Unit agnostic as long as unit is consistent with RetentionDuration and MaxBlockDuration.
// Typically it is in milliseconds.
MinBlockDuration int64
// The maximum timestamp range of compacted blocks.
// Unit agnostic as long as unit is consistent with MinBlockDuration and RetentionDuration.
// Typically it is in milliseconds.
MaxBlockDuration int64
// HeadChunksWriteBufferSize configures the write buffer size used by the head chunks mapper.
HeadChunksWriteBufferSize int
// HeadChunksWriteQueueSize configures the size of the chunk write queue used in the head chunks mapper.
HeadChunksWriteQueueSize int
// SamplesPerChunk configures the target number of samples per chunk.
SamplesPerChunk int
// SeriesLifecycleCallback specifies a list of callbacks that will be called during a lifecycle of a series.
// It is always a no-op in Prometheus and mainly meant for external users who import TSDB.
SeriesLifecycleCallback SeriesLifecycleCallback
// BlocksToDelete is a function which returns the blocks which can be deleted.
// It is always the default time and size based retention in Prometheus and
// mainly meant for external users who import TSDB.
BlocksToDelete BlocksToDeleteFunc
// Enables the in memory exemplar storage.
EnableExemplarStorage bool
// Enables the snapshot of in-memory chunks on shutdown. This makes restarts faster.
EnableMemorySnapshotOnShutdown bool
// MaxExemplars sets the size, in # of exemplars stored, of the single circular buffer used to store exemplars in memory.
// See tsdb/exemplar.go, specifically the CircularExemplarStorage struct and it's constructor NewCircularExemplarStorage.
MaxExemplars int64
// Disables isolation between reads and in-flight appends.
IsolationDisabled bool
// EnableNativeHistograms enables the ingestion of native histograms.
EnableNativeHistograms bool
// OutOfOrderTimeWindow specifies how much out of order is allowed, if any.
// This can change during run-time, so this value from here should only be used
// while initialising.
OutOfOrderTimeWindow int64
// OutOfOrderCapMax is maximum capacity for OOO chunks (in samples).
// If it is <=0, the default value is assumed.
OutOfOrderCapMax int64
// Compaction of overlapping blocks are allowed if EnableOverlappingCompaction is true.
// This is an optional flag for overlapping blocks.
// The reason why this flag exists is because there are various users of the TSDB
// that do not want vertical compaction happening on ingest time. Instead,
// they'd rather keep overlapping blocks and let another component do the overlapping compaction later.
// For Prometheus, this will always be true.
EnableOverlappingCompaction bool
// EnableSharding enables query sharding support in TSDB.
EnableSharding bool
}
type BlocksToDeleteFunc func(blocks []*Block) map[ulid.ULID]struct{}
// DB handles reads and writes of time series falling into
// a hashed partition of a seriedb.
type DB struct {
dir string
locker *tsdbutil.DirLocker
logger log.Logger
metrics *dbMetrics
opts *Options
chunkPool chunkenc.Pool
compactor Compactor
blocksToDelete BlocksToDeleteFunc
// Mutex for that must be held when modifying the general block layout or lastGarbageCollectedMmapRef.
mtx sync.RWMutex
blocks []*Block
// The last OOO chunk that was compacted and written to disk. New queriers must not read chunks less
// than or equal to this reference, as these chunks could be garbage collected at any time.
lastGarbageCollectedMmapRef chunks.ChunkDiskMapperRef
head *Head
compactc chan struct{}
donec chan struct{}
stopc chan struct{}
// cmtx ensures that compactions and deletions don't run simultaneously.
cmtx sync.Mutex
// autoCompactMtx ensures that no compaction gets triggered while
// changing the autoCompact var.
autoCompactMtx sync.Mutex
autoCompact bool
// Cancel a running compaction when a shutdown is initiated.
compactCancel context.CancelFunc
// oooWasEnabled is true if out of order support was enabled at least one time
// during the time TSDB was up. In which case we need to keep supporting
// out-of-order compaction and vertical queries.
oooWasEnabled atomic.Bool
writeNotified wlog.WriteNotified
registerer prometheus.Registerer
}
type dbMetrics struct {
loadedBlocks prometheus.GaugeFunc
symbolTableSize prometheus.GaugeFunc
reloads prometheus.Counter
reloadsFailed prometheus.Counter
compactionsFailed prometheus.Counter
compactionsTriggered prometheus.Counter
compactionsSkipped prometheus.Counter
sizeRetentionCount prometheus.Counter
timeRetentionCount prometheus.Counter
startTime prometheus.GaugeFunc
tombCleanTimer prometheus.Histogram
blocksBytes prometheus.Gauge
maxBytes prometheus.Gauge
retentionDuration prometheus.Gauge
}
func newDBMetrics(db *DB, r prometheus.Registerer) *dbMetrics {
m := &dbMetrics{}
m.loadedBlocks = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_blocks_loaded",
Help: "Number of currently loaded data blocks",
}, func() float64 {
db.mtx.RLock()
defer db.mtx.RUnlock()
return float64(len(db.blocks))
})
m.symbolTableSize = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_symbol_table_size_bytes",
Help: "Size of symbol table in memory for loaded blocks",
}, func() float64 {
db.mtx.RLock()
blocks := db.blocks
db.mtx.RUnlock()
symTblSize := uint64(0)
for _, b := range blocks {
symTblSize += b.GetSymbolTableSize()
}
return float64(symTblSize)
})
m.reloads = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_reloads_total",
Help: "Number of times the database reloaded block data from disk.",
})
m.reloadsFailed = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_reloads_failures_total",
Help: "Number of times the database failed to reloadBlocks block data from disk.",
})
m.compactionsTriggered = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_triggered_total",
Help: "Total number of triggered compactions for the partition.",
})
m.compactionsFailed = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_failed_total",
Help: "Total number of compactions that failed for the partition.",
})
m.timeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_time_retentions_total",
Help: "The number of times that blocks were deleted because the maximum time limit was exceeded.",
})
m.compactionsSkipped = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_skipped_total",
Help: "Total number of skipped compactions due to disabled auto compaction.",
})
m.startTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_lowest_timestamp",
Help: "Lowest timestamp value stored in the database. The unit is decided by the library consumer.",
}, func() float64 {
db.mtx.RLock()
defer db.mtx.RUnlock()
if len(db.blocks) == 0 {
return float64(db.head.MinTime())
}
return float64(db.blocks[0].meta.MinTime)
})
m.tombCleanTimer = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "prometheus_tsdb_tombstone_cleanup_seconds",
Help: "The time taken to recompact blocks to remove tombstones.",
NativeHistogramBucketFactor: 1.1,
NativeHistogramMaxBucketNumber: 100,
NativeHistogramMinResetDuration: 1 * time.Hour,
})
m.blocksBytes = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_storage_blocks_bytes",
Help: "The number of bytes that are currently used for local storage by all blocks.",
})
m.maxBytes = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_retention_limit_bytes",
Help: "Max number of bytes to be retained in the tsdb blocks, configured 0 means disabled",
})
m.retentionDuration = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_retention_limit_seconds",
Help: "How long to retain samples in storage.",
})
m.sizeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_size_retentions_total",
Help: "The number of times that blocks were deleted because the maximum number of bytes was exceeded.",
})
if r != nil {
r.MustRegister(
m.loadedBlocks,
m.symbolTableSize,
m.reloads,
m.reloadsFailed,
m.compactionsFailed,
m.compactionsTriggered,
m.compactionsSkipped,
m.sizeRetentionCount,
m.timeRetentionCount,
m.startTime,
m.tombCleanTimer,
m.blocksBytes,
m.maxBytes,
m.retentionDuration,
)
}
return m
}
// DBStats contains statistics about the DB separated by component (eg. head).
// They are available before the DB has finished initializing.
type DBStats struct {
Head *HeadStats
}
// NewDBStats returns a new DBStats object initialized using the
// new function from each component.
func NewDBStats() *DBStats {
return &DBStats{
Head: NewHeadStats(),
}
}
// ErrClosed is returned when the db is closed.
var ErrClosed = errors.New("db already closed")
// DBReadOnly provides APIs for read only operations on a database.
// Current implementation doesn't support concurrency so
// all API calls should happen in the same go routine.
type DBReadOnly struct {
logger log.Logger
dir string
closers []io.Closer
closed chan struct{}
}
// OpenDBReadOnly opens DB in the given directory for read only operations.
func OpenDBReadOnly(dir string, l log.Logger) (*DBReadOnly, error) {
if _, err := os.Stat(dir); err != nil {
return nil, fmt.Errorf("opening the db dir: %w", err)
}
if l == nil {
l = log.NewNopLogger()
}
return &DBReadOnly{
logger: l,
dir: dir,
closed: make(chan struct{}),
}, nil
}
// FlushWAL creates a new block containing all data that's currently in the memory buffer/WAL.
// Samples that are in existing blocks will not be written to the new block.
// Note that if the read only database is running concurrently with a
// writable database then writing the WAL to the database directory can race.
func (db *DBReadOnly) FlushWAL(dir string) (returnErr error) {
blockReaders, err := db.Blocks()
if err != nil {
return fmt.Errorf("read blocks: %w", err)
}
maxBlockTime := int64(math.MinInt64)
if len(blockReaders) > 0 {
maxBlockTime = blockReaders[len(blockReaders)-1].Meta().MaxTime
}
w, err := wlog.Open(db.logger, filepath.Join(db.dir, "wal"))
if err != nil {
return err
}
var wbl *wlog.WL
wblDir := filepath.Join(db.dir, wlog.WblDirName)
if _, err := os.Stat(wblDir); !os.IsNotExist(err) {
wbl, err = wlog.Open(db.logger, wblDir)
if err != nil {
return err
}
}
opts := DefaultHeadOptions()
opts.ChunkDirRoot = db.dir
head, err := NewHead(nil, db.logger, w, wbl, opts, NewHeadStats())
if err != nil {
return err
}
defer func() {
errs := tsdb_errors.NewMulti(returnErr)
if err := head.Close(); err != nil {
errs.Add(fmt.Errorf("closing Head: %w", err))
}
returnErr = errs.Err()
}()
// Set the min valid time for the ingested wal samples
// to be no lower than the maxt of the last block.
if err := head.Init(maxBlockTime); err != nil {
return fmt.Errorf("read WAL: %w", err)
}
mint := head.MinTime()
maxt := head.MaxTime()
rh := NewRangeHead(head, mint, maxt)
compactor, err := NewLeveledCompactor(
context.Background(),
nil,
db.logger,
ExponentialBlockRanges(DefaultOptions().MinBlockDuration, 3, 5),
chunkenc.NewPool(), nil,
)
if err != nil {
return fmt.Errorf("create leveled compactor: %w", err)
}
// Add +1 millisecond to block maxt because block intervals are half-open: [b.MinTime, b.MaxTime).
// Because of this block intervals are always +1 than the total samples it includes.
_, err = compactor.Write(dir, rh, mint, maxt+1, nil)
if err != nil {
return fmt.Errorf("writing WAL: %w", err)
}
return nil
}
func (db *DBReadOnly) loadDataAsQueryable(maxt int64) (storage.SampleAndChunkQueryable, error) {
select {
case <-db.closed:
return nil, ErrClosed
default:
}
blockReaders, err := db.Blocks()
if err != nil {
return nil, err
}
blocks := make([]*Block, len(blockReaders))
for i, b := range blockReaders {
b, ok := b.(*Block)
if !ok {
return nil, errors.New("unable to convert a read only block to a normal block")
}
blocks[i] = b
}
opts := DefaultHeadOptions()
opts.ChunkDirRoot = db.dir
head, err := NewHead(nil, db.logger, nil, nil, opts, NewHeadStats())
if err != nil {
return nil, err
}
maxBlockTime := int64(math.MinInt64)
if len(blocks) > 0 {
maxBlockTime = blocks[len(blocks)-1].Meta().MaxTime
}
// Also add the WAL if the current blocks don't cover the requests time range.
if maxBlockTime <= maxt {
if err := head.Close(); err != nil {
return nil, err
}
w, err := wlog.Open(db.logger, filepath.Join(db.dir, "wal"))
if err != nil {
return nil, err
}
var wbl *wlog.WL
wblDir := filepath.Join(db.dir, wlog.WblDirName)
if _, err := os.Stat(wblDir); !os.IsNotExist(err) {
wbl, err = wlog.Open(db.logger, wblDir)
if err != nil {
return nil, err
}
}
opts := DefaultHeadOptions()
opts.ChunkDirRoot = db.dir
head, err = NewHead(nil, db.logger, w, wbl, opts, NewHeadStats())
if err != nil {
return nil, err
}
// Set the min valid time for the ingested wal samples
// to be no lower than the maxt of the last block.
if err := head.Init(maxBlockTime); err != nil {
return nil, fmt.Errorf("read WAL: %w", err)
}
// Set the wal and the wbl to nil to disable related operations.
// This is mainly to avoid blocking when closing the head.
head.wal = nil
head.wbl = nil
}
db.closers = append(db.closers, head)
return &DB{
dir: db.dir,
logger: db.logger,
blocks: blocks,
head: head,
}, nil
}
// Querier loads the blocks and wal and returns a new querier over the data partition for the given time range.
// Current implementation doesn't support multiple Queriers.
func (db *DBReadOnly) Querier(mint, maxt int64) (storage.Querier, error) {
q, err := db.loadDataAsQueryable(maxt)
if err != nil {
return nil, err
}
return q.Querier(mint, maxt)
}
// ChunkQuerier loads blocks and the wal and returns a new chunk querier over the data partition for the given time range.
// Current implementation doesn't support multiple ChunkQueriers.
func (db *DBReadOnly) ChunkQuerier(mint, maxt int64) (storage.ChunkQuerier, error) {
q, err := db.loadDataAsQueryable(maxt)
if err != nil {
return nil, err
}
return q.ChunkQuerier(mint, maxt)
}
// Blocks returns a slice of block readers for persisted blocks.
func (db *DBReadOnly) Blocks() ([]BlockReader, error) {
select {
case <-db.closed:
return nil, ErrClosed
default:
}
loadable, corrupted, err := openBlocks(db.logger, db.dir, nil, nil)
if err != nil {
return nil, err
}
// Corrupted blocks that have been superseded by a loadable block can be safely ignored.
for _, block := range loadable {
for _, b := range block.Meta().Compaction.Parents {
delete(corrupted, b.ULID)
}
}
if len(corrupted) > 0 {
for _, b := range loadable {
if err := b.Close(); err != nil {
level.Warn(db.logger).Log("msg", "Closing block failed", "err", err, "block", b)
}
}
errs := tsdb_errors.NewMulti()
for ulid, err := range corrupted {
if err != nil {
errs.Add(fmt.Errorf("corrupted block %s: %w", ulid.String(), err))
}
}
return nil, errs.Err()
}
if len(loadable) == 0 {
return nil, nil
}
slices.SortFunc(loadable, func(a, b *Block) int {
switch {
case a.Meta().MinTime < b.Meta().MinTime:
return -1
case a.Meta().MinTime > b.Meta().MinTime:
return 1
default:
return 0
}
})
blockMetas := make([]BlockMeta, 0, len(loadable))
for _, b := range loadable {
blockMetas = append(blockMetas, b.Meta())
}
if overlaps := OverlappingBlocks(blockMetas); len(overlaps) > 0 {
level.Warn(db.logger).Log("msg", "Overlapping blocks found during opening", "detail", overlaps.String())
}
// Close all previously open readers and add the new ones to the cache.
for _, closer := range db.closers {
closer.Close()
}
blockClosers := make([]io.Closer, len(loadable))
blockReaders := make([]BlockReader, len(loadable))
for i, b := range loadable {
blockClosers[i] = b
blockReaders[i] = b
}
db.closers = blockClosers
return blockReaders, nil
}
// LastBlockID returns the BlockID of latest block.
func (db *DBReadOnly) LastBlockID() (string, error) {
entries, err := os.ReadDir(db.dir)
if err != nil {
return "", err
}
max := uint64(0)
lastBlockID := ""
for _, e := range entries {
// Check if dir is a block dir or not.
dirName := e.Name()
ulidObj, err := ulid.ParseStrict(dirName)
if err != nil {
continue // Not a block dir.
}
timestamp := ulidObj.Time()
if timestamp > max {
max = timestamp
lastBlockID = dirName
}
}
if lastBlockID == "" {
return "", errors.New("no blocks found")
}
return lastBlockID, nil
}
// Block returns a block reader by given block id.
func (db *DBReadOnly) Block(blockID string) (BlockReader, error) {
select {
case <-db.closed:
return nil, ErrClosed
default:
}
_, err := os.Stat(filepath.Join(db.dir, blockID))
if os.IsNotExist(err) {
return nil, fmt.Errorf("invalid block ID %s", blockID)
}
block, err := OpenBlock(db.logger, filepath.Join(db.dir, blockID), nil)
if err != nil {
return nil, err
}
db.closers = append(db.closers, block)
return block, nil
}
// Close all block readers.
func (db *DBReadOnly) Close() error {
select {
case <-db.closed:
return ErrClosed
default:
}
close(db.closed)
return tsdb_errors.CloseAll(db.closers)
}
// Open returns a new DB in the given directory. If options are empty, DefaultOptions will be used.
func Open(dir string, l log.Logger, r prometheus.Registerer, opts *Options, stats *DBStats) (db *DB, err error) {
var rngs []int64
opts, rngs = validateOpts(opts, nil)
return open(dir, l, r, opts, rngs, stats)
}
func validateOpts(opts *Options, rngs []int64) (*Options, []int64) {
if opts == nil {
opts = DefaultOptions()
}
if opts.StripeSize <= 0 {
opts.StripeSize = DefaultStripeSize
}
if opts.HeadChunksWriteBufferSize <= 0 {
opts.HeadChunksWriteBufferSize = chunks.DefaultWriteBufferSize
}
if opts.HeadChunksWriteQueueSize < 0 {
opts.HeadChunksWriteQueueSize = chunks.DefaultWriteQueueSize
}
if opts.SamplesPerChunk <= 0 {
opts.SamplesPerChunk = DefaultSamplesPerChunk
}
if opts.MaxBlockChunkSegmentSize <= 0 {
opts.MaxBlockChunkSegmentSize = chunks.DefaultChunkSegmentSize
}
if opts.MinBlockDuration <= 0 {
opts.MinBlockDuration = DefaultBlockDuration
}
if opts.MinBlockDuration > opts.MaxBlockDuration {
opts.MaxBlockDuration = opts.MinBlockDuration
}
if opts.OutOfOrderCapMax <= 0 {
opts.OutOfOrderCapMax = DefaultOutOfOrderCapMax
}
if opts.OutOfOrderTimeWindow < 0 {
opts.OutOfOrderTimeWindow = 0
}
if len(rngs) == 0 {
// Start with smallest block duration and create exponential buckets until the exceed the
// configured maximum block duration.
rngs = ExponentialBlockRanges(opts.MinBlockDuration, 10, 3)
}
return opts, rngs
}
// open returns a new DB in the given directory.
// It initializes the lockfile, WAL, compactor, and Head (by replaying the WAL), and runs the database.
// It is not safe to open more than one DB in the same directory.
func open(dir string, l log.Logger, r prometheus.Registerer, opts *Options, rngs []int64, stats *DBStats) (_ *DB, returnedErr error) {
if err := os.MkdirAll(dir, 0o777); err != nil {
return nil, err
}
if l == nil {
l = log.NewNopLogger()
}
if stats == nil {
stats = NewDBStats()
}
for i, v := range rngs {
if v > opts.MaxBlockDuration {
rngs = rngs[:i]
break
}
}
// Fixup bad format written by Prometheus 2.1.
if err := repairBadIndexVersion(l, dir); err != nil {
return nil, fmt.Errorf("repair bad index version: %w", err)
}
walDir := filepath.Join(dir, "wal")
wblDir := filepath.Join(dir, wlog.WblDirName)
for _, tmpDir := range []string{walDir, dir} {
// Remove tmp dirs.
if err := removeBestEffortTmpDirs(l, tmpDir); err != nil {
return nil, fmt.Errorf("remove tmp dirs: %w", err)
}
}
db := &DB{
dir: dir,
logger: l,
opts: opts,
compactc: make(chan struct{}, 1),
donec: make(chan struct{}),
stopc: make(chan struct{}),
autoCompact: true,
chunkPool: chunkenc.NewPool(),
blocksToDelete: opts.BlocksToDelete,
registerer: r,
}
defer func() {
// Close files if startup fails somewhere.
if returnedErr == nil {
return
}
close(db.donec) // DB is never run if it was an error, so close this channel here.
errs := tsdb_errors.NewMulti(returnedErr)
if err := db.Close(); err != nil {
errs.Add(fmt.Errorf("close DB after failed startup: %w", err))
}
returnedErr = errs.Err()
}()
if db.blocksToDelete == nil {
db.blocksToDelete = DefaultBlocksToDelete(db)
}
var err error
db.locker, err = tsdbutil.NewDirLocker(dir, "tsdb", db.logger, r)
if err != nil {
return nil, err
}
if !opts.NoLockfile {
if err := db.locker.Lock(); err != nil {
return nil, err
}
}
ctx, cancel := context.WithCancel(context.Background())
db.compactor, err = NewLeveledCompactorWithOptions(ctx, r, l, rngs, db.chunkPool, LeveledCompactorOptions{
MaxBlockChunkSegmentSize: opts.MaxBlockChunkSegmentSize,
EnableOverlappingCompaction: opts.EnableOverlappingCompaction,
})
if err != nil {
cancel()
return nil, fmt.Errorf("create leveled compactor: %w", err)
}
db.compactCancel = cancel
var wal, wbl *wlog.WL
segmentSize := wlog.DefaultSegmentSize
// Wal is enabled.
if opts.WALSegmentSize >= 0 {
// Wal is set to a custom size.
if opts.WALSegmentSize > 0 {
segmentSize = opts.WALSegmentSize
}
wal, err = wlog.NewSize(l, r, walDir, segmentSize, opts.WALCompression)
if err != nil {
return nil, err
}
// Check if there is a WBL on disk, in which case we should replay that data.
wblSize, err := fileutil.DirSize(wblDir)
if err != nil && !os.IsNotExist(err) {
return nil, err
}
if opts.OutOfOrderTimeWindow > 0 || wblSize > 0 {
wbl, err = wlog.NewSize(l, r, wblDir, segmentSize, opts.WALCompression)
if err != nil {
return nil, err
}
}
}
db.oooWasEnabled.Store(opts.OutOfOrderTimeWindow > 0)
headOpts := DefaultHeadOptions()
headOpts.ChunkRange = rngs[0]
headOpts.ChunkDirRoot = dir
headOpts.ChunkPool = db.chunkPool
headOpts.ChunkWriteBufferSize = opts.HeadChunksWriteBufferSize
headOpts.ChunkWriteQueueSize = opts.HeadChunksWriteQueueSize
headOpts.SamplesPerChunk = opts.SamplesPerChunk
headOpts.StripeSize = opts.StripeSize
headOpts.SeriesCallback = opts.SeriesLifecycleCallback
headOpts.EnableExemplarStorage = opts.EnableExemplarStorage
headOpts.MaxExemplars.Store(opts.MaxExemplars)
headOpts.EnableMemorySnapshotOnShutdown = opts.EnableMemorySnapshotOnShutdown
headOpts.EnableNativeHistograms.Store(opts.EnableNativeHistograms)
headOpts.OutOfOrderTimeWindow.Store(opts.OutOfOrderTimeWindow)
headOpts.OutOfOrderCapMax.Store(opts.OutOfOrderCapMax)
headOpts.EnableSharding = opts.EnableSharding
if opts.WALReplayConcurrency > 0 {
headOpts.WALReplayConcurrency = opts.WALReplayConcurrency
}
if opts.IsolationDisabled {
// We only override this flag if isolation is disabled at DB level. We use the default otherwise.
headOpts.IsolationDisabled = opts.IsolationDisabled
}
db.head, err = NewHead(r, l, wal, wbl, headOpts, stats.Head)
if err != nil {
return nil, err
}
db.head.writeNotified = db.writeNotified
// Register metrics after assigning the head block.
db.metrics = newDBMetrics(db, r)
maxBytes := opts.MaxBytes
if maxBytes < 0 {
maxBytes = 0
}
db.metrics.maxBytes.Set(float64(maxBytes))
db.metrics.retentionDuration.Set((time.Duration(opts.RetentionDuration) * time.Millisecond).Seconds())
if err := db.reload(); err != nil {
return nil, err
}
// Set the min valid time for the ingested samples
// to be no lower than the maxt of the last block.
minValidTime := int64(math.MinInt64)
// We do not consider blocks created from out-of-order samples for Head's minValidTime
// since minValidTime is only for the in-order data and we do not want to discard unnecessary
// samples from the Head.
inOrderMaxTime, ok := db.inOrderBlocksMaxTime()
if ok {
minValidTime = inOrderMaxTime
}
if initErr := db.head.Init(minValidTime); initErr != nil {
db.head.metrics.walCorruptionsTotal.Inc()
var e *errLoadWbl
if errors.As(initErr, &e) {
level.Warn(db.logger).Log("msg", "Encountered WBL read error, attempting repair", "err", initErr)
if err := wbl.Repair(e.err); err != nil {
return nil, fmt.Errorf("repair corrupted WBL: %w", err)
}
level.Info(db.logger).Log("msg", "Successfully repaired WBL")
} else {
level.Warn(db.logger).Log("msg", "Encountered WAL read error, attempting repair", "err", initErr)
if err := wal.Repair(initErr); err != nil {
return nil, fmt.Errorf("repair corrupted WAL: %w", err)
}
level.Info(db.logger).Log("msg", "Successfully repaired WAL")
}
}
if db.head.MinOOOTime() != int64(math.MaxInt64) {
// Some OOO data was replayed from the disk that needs compaction and cleanup.
db.oooWasEnabled.Store(true)
}
go db.run(ctx)
return db, nil
}
func removeBestEffortTmpDirs(l log.Logger, dir string) error {
files, err := os.ReadDir(dir)
if os.IsNotExist(err) {
return nil
}
if err != nil {
return err
}
for _, f := range files {
if isTmpDir(f) {
if err := os.RemoveAll(filepath.Join(dir, f.Name())); err != nil {
level.Error(l).Log("msg", "failed to delete tmp block dir", "dir", filepath.Join(dir, f.Name()), "err", err)
continue
}
level.Info(l).Log("msg", "Found and deleted tmp block dir", "dir", filepath.Join(dir, f.Name()))
}
}
return nil
}
// StartTime implements the Storage interface.
func (db *DB) StartTime() (int64, error) {
db.mtx.RLock()
defer db.mtx.RUnlock()
if len(db.blocks) > 0 {
return db.blocks[0].Meta().MinTime, nil
}
return db.head.MinTime(), nil
}
// Dir returns the directory of the database.
func (db *DB) Dir() string {
return db.dir
}
func (db *DB) run(ctx context.Context) {
defer close(db.donec)
backoff := time.Duration(0)
for {
select {
case <-db.stopc:
return
case <-time.After(backoff):
}
select {
case <-time.After(1 * time.Minute):
db.cmtx.Lock()
if err := db.reloadBlocks(); err != nil {
level.Error(db.logger).Log("msg", "reloadBlocks", "err", err)
}
db.cmtx.Unlock()
select {
case db.compactc <- struct{}{}:
default:
}
// We attempt mmapping of head chunks regularly.
db.head.mmapHeadChunks()
case <-db.compactc:
db.metrics.compactionsTriggered.Inc()
db.autoCompactMtx.Lock()
if db.autoCompact {
if err := db.Compact(ctx); err != nil {
level.Error(db.logger).Log("msg", "compaction failed", "err", err)
backoff = exponential(backoff, 1*time.Second, 1*time.Minute)
} else {
backoff = 0
}
} else {
db.metrics.compactionsSkipped.Inc()
}
db.autoCompactMtx.Unlock()
case <-db.stopc:
return
}
}
}
// Appender opens a new appender against the database.
func (db *DB) Appender(ctx context.Context) storage.Appender {
return dbAppender{db: db, Appender: db.head.Appender(ctx)}
}
// ApplyConfig applies a new config to the DB.
// Behaviour of 'OutOfOrderTimeWindow' is as follows:
// OOO enabled = oooTimeWindow > 0. OOO disabled = oooTimeWindow is 0.
// 1) Before: OOO disabled, Now: OOO enabled =>
// - A new WBL is created for the head block.
// - OOO compaction is enabled.
// - Overlapping queries are enabled.
//
// 2) Before: OOO enabled, Now: OOO enabled =>
// - Only the time window is updated.
//
// 3) Before: OOO enabled, Now: OOO disabled =>
// - Time Window set to 0. So no new OOO samples will be allowed.
// - OOO WBL will stay and will be eventually cleaned up.
// - OOO Compaction and overlapping queries will remain enabled until a restart or until all OOO samples are compacted.
//
// 4) Before: OOO disabled, Now: OOO disabled => no-op.
func (db *DB) ApplyConfig(conf *config.Config) error {
oooTimeWindow := int64(0)
if conf.StorageConfig.TSDBConfig != nil {
oooTimeWindow = conf.StorageConfig.TSDBConfig.OutOfOrderTimeWindow
}
if oooTimeWindow < 0 {
oooTimeWindow = 0
}
// Create WBL if it was not present and if OOO is enabled with WAL enabled.
var wblog *wlog.WL
var err error
switch {
case db.head.wbl != nil:
// The existing WBL from the disk might have been replayed while OOO was disabled.
wblog = db.head.wbl
case !db.oooWasEnabled.Load() && oooTimeWindow > 0 && db.opts.WALSegmentSize >= 0:
segmentSize := wlog.DefaultSegmentSize
// Wal is set to a custom size.
if db.opts.WALSegmentSize > 0 {
segmentSize = db.opts.WALSegmentSize
}
oooWalDir := filepath.Join(db.dir, wlog.WblDirName)
wblog, err = wlog.NewSize(db.logger, db.registerer, oooWalDir, segmentSize, db.opts.WALCompression)
if err != nil {
return err
}
}
db.opts.OutOfOrderTimeWindow = oooTimeWindow
db.head.ApplyConfig(conf, wblog)
if !db.oooWasEnabled.Load() {
db.oooWasEnabled.Store(oooTimeWindow > 0)
}
return nil
}
// EnableNativeHistograms enables the native histogram feature.
func (db *DB) EnableNativeHistograms() {
db.head.EnableNativeHistograms()
}
// DisableNativeHistograms disables the native histogram feature.
func (db *DB) DisableNativeHistograms() {
db.head.DisableNativeHistograms()
}
// dbAppender wraps the DB's head appender and triggers compactions on commit
// if necessary.
type dbAppender struct {
storage.Appender
db *DB
}
var _ storage.GetRef = dbAppender{}
func (a dbAppender) GetRef(lset labels.Labels, hash uint64) (storage.SeriesRef, labels.Labels) {
if g, ok := a.Appender.(storage.GetRef); ok {
return g.GetRef(lset, hash)
}
return 0, labels.EmptyLabels()
}
func (a dbAppender) Commit() error {
err := a.Appender.Commit()
// We could just run this check every few minutes practically. But for benchmarks
// and high frequency use cases this is the safer way.
if a.db.head.compactable() {
select {
case a.db.compactc <- struct{}{}:
default:
}
}
return err
}
// Compact data if possible. After successful compaction blocks are reloaded
// which will also delete the blocks that fall out of the retention window.
// Old blocks are only deleted on reloadBlocks based on the new block's parent information.
// See DB.reloadBlocks documentation for further information.
func (db *DB) Compact(ctx context.Context) (returnErr error) {
db.cmtx.Lock()
defer db.cmtx.Unlock()
defer func() {
if returnErr != nil && !errors.Is(returnErr, context.Canceled) {
// If we got an error because context was canceled then we're most likely
// shutting down TSDB and we don't need to report this on metrics
db.metrics.compactionsFailed.Inc()
}
}()
lastBlockMaxt := int64(math.MinInt64)
defer func() {
errs := tsdb_errors.NewMulti(returnErr)
if err := db.head.truncateWAL(lastBlockMaxt); err != nil {
errs.Add(fmt.Errorf("WAL truncation in Compact defer: %w", err))
}
returnErr = errs.Err()
}()
start := time.Now()
// Check whether we have pending head blocks that are ready to be persisted.
// They have the highest priority.
for {
select {
case <-db.stopc:
return nil
default:
}
if !db.head.compactable() {
break
}
mint := db.head.MinTime()
maxt := rangeForTimestamp(mint, db.head.chunkRange.Load())
// Wrap head into a range that bounds all reads to it.
// We remove 1 millisecond from maxt because block
// intervals are half-open: [b.MinTime, b.MaxTime). But
// chunk intervals are closed: [c.MinTime, c.MaxTime];
// so in order to make sure that overlaps are evaluated
// consistently, we explicitly remove the last value
// from the block interval here.
rh := NewRangeHeadWithIsolationDisabled(db.head, mint, maxt-1)
// Compaction runs with isolation disabled, because head.compactable()
// ensures that maxt is more than chunkRange/2 back from now, and
// head.appendableMinValidTime() ensures that no new appends can start within the compaction range.
// We do need to wait for any overlapping appenders that started previously to finish.
db.head.WaitForAppendersOverlapping(rh.MaxTime())
if err := db.compactHead(rh); err != nil {
return fmt.Errorf("compact head: %w", err)
}
// Consider only successful compactions for WAL truncation.
lastBlockMaxt = maxt
}
// Clear some disk space before compacting blocks, especially important
// when Head compaction happened over a long time range.
if err := db.head.truncateWAL(lastBlockMaxt); err != nil {
return fmt.Errorf("WAL truncation in Compact: %w", err)
}
compactionDuration := time.Since(start)
if compactionDuration.Milliseconds() > db.head.chunkRange.Load() {
level.Warn(db.logger).Log(
"msg", "Head compaction took longer than the block time range, compactions are falling behind and won't be able to catch up",
"duration", compactionDuration.String(),
"block_range", db.head.chunkRange.Load(),
)
}
if lastBlockMaxt != math.MinInt64 {
// The head was compacted, so we compact OOO head as well.
if err := db.compactOOOHead(ctx); err != nil {
return fmt.Errorf("compact ooo head: %w", err)
}
}
return db.compactBlocks()
}
// CompactHead compacts the given RangeHead.
func (db *DB) CompactHead(head *RangeHead) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
if err := db.compactHead(head); err != nil {
return fmt.Errorf("compact head: %w", err)
}
if err := db.head.truncateWAL(head.BlockMaxTime()); err != nil {
return fmt.Errorf("WAL truncation: %w", err)
}
return nil
}
// CompactOOOHead compacts the OOO Head.
func (db *DB) CompactOOOHead(ctx context.Context) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
return db.compactOOOHead(ctx)
}
func (db *DB) compactOOOHead(ctx context.Context) error {
if !db.oooWasEnabled.Load() {
return nil
}
oooHead, err := NewOOOCompactionHead(ctx, db.head)
if err != nil {
return fmt.Errorf("get ooo compaction head: %w", err)
}
ulids, err := db.compactOOO(db.dir, oooHead)
if err != nil {
return fmt.Errorf("compact ooo head: %w", err)
}
if err := db.reloadBlocks(); err != nil {
errs := tsdb_errors.NewMulti(err)
for _, uid := range ulids {
if errRemoveAll := os.RemoveAll(filepath.Join(db.dir, uid.String())); errRemoveAll != nil {
errs.Add(errRemoveAll)
}
}
return fmt.Errorf("reloadBlocks blocks after failed compact ooo head: %w", errs.Err())
}
lastWBLFile, minOOOMmapRef := oooHead.LastWBLFile(), oooHead.LastMmapRef()
if lastWBLFile != 0 || minOOOMmapRef != 0 {
if minOOOMmapRef != 0 {
// Ensure that no more queriers are created that will reference chunks we're about to garbage collect.
// truncateOOO waits for any existing queriers that reference chunks we're about to garbage collect to
// complete before running garbage collection, so we don't need to do that here.
//
// We take mtx to ensure that Querier() and ChunkQuerier() don't miss blocks: without this, they could
// capture the list of blocks before the call to reloadBlocks() above runs, but then capture
// lastGarbageCollectedMmapRef after we update it here, and therefore not query either the blocks we've just
// written or the head chunks those blocks were created from.
db.mtx.Lock()
db.lastGarbageCollectedMmapRef = minOOOMmapRef
db.mtx.Unlock()
}
if err := db.head.truncateOOO(lastWBLFile, minOOOMmapRef); err != nil {
return fmt.Errorf("truncate ooo wbl: %w", err)
}
}
return nil
}
// compactOOO creates a new block per possible block range in the compactor's directory from the OOO Head given.
// Each ULID in the result corresponds to a block in a unique time range.
func (db *DB) compactOOO(dest string, oooHead *OOOCompactionHead) (_ []ulid.ULID, err error) {
start := time.Now()
blockSize := oooHead.ChunkRange()
oooHeadMint, oooHeadMaxt := oooHead.MinTime(), oooHead.MaxTime()
ulids := make([]ulid.ULID, 0)
defer func() {
if err != nil {
// Best effort removal of created block on any error.
for _, uid := range ulids {
_ = os.RemoveAll(filepath.Join(db.dir, uid.String()))
}
}
}()
meta := &BlockMeta{}
meta.Compaction.SetOutOfOrder()
for t := blockSize * (oooHeadMint / blockSize); t <= oooHeadMaxt; t += blockSize {
mint, maxt := t, t+blockSize
// Block intervals are half-open: [b.MinTime, b.MaxTime). Block intervals are always +1 than the total samples it includes.
uid, err := db.compactor.Write(dest, oooHead.CloneForTimeRange(mint, maxt-1), mint, maxt, meta)
if err != nil {
return nil, err
}
if uid.Compare(ulid.ULID{}) != 0 {
ulids = append(ulids, uid)
}
}
if len(ulids) == 0 {
level.Info(db.logger).Log(
"msg", "compact ooo head resulted in no blocks",
"duration", time.Since(start),
)
return nil, nil
}
level.Info(db.logger).Log(
"msg", "out-of-order compaction completed",
"duration", time.Since(start),
"ulids", fmt.Sprintf("%v", ulids),
)
return ulids, nil
}
// compactHead compacts the given RangeHead.
// The compaction mutex should be held before calling this method.
func (db *DB) compactHead(head *RangeHead) error {
uid, err := db.compactor.Write(db.dir, head, head.MinTime(), head.BlockMaxTime(), nil)
if err != nil {
return fmt.Errorf("persist head block: %w", err)
}
if err := db.reloadBlocks(); err != nil {
if errRemoveAll := os.RemoveAll(filepath.Join(db.dir, uid.String())); errRemoveAll != nil {
return tsdb_errors.NewMulti(
fmt.Errorf("reloadBlocks blocks: %w", err),
fmt.Errorf("delete persisted head block after failed db reloadBlocks:%s: %w", uid, errRemoveAll),
).Err()
}
return fmt.Errorf("reloadBlocks blocks: %w", err)
}
if err = db.head.truncateMemory(head.BlockMaxTime()); err != nil {
return fmt.Errorf("head memory truncate: %w", err)
}
return nil
}
// compactBlocks compacts all the eligible on-disk blocks.
// The compaction mutex should be held before calling this method.
func (db *DB) compactBlocks() (err error) {
// Check for compactions of multiple blocks.
for {
// If we have a lot of blocks to compact the whole process might take
// long enough that we end up with a HEAD block that needs to be written.
// Check if that's the case and stop compactions early.
if db.head.compactable() {
level.Warn(db.logger).Log("msg", "aborting block compactions to persit the head block")
return nil
}
plan, err := db.compactor.Plan(db.dir)
if err != nil {
return fmt.Errorf("plan compaction: %w", err)
}
if len(plan) == 0 {
break
}
select {
case <-db.stopc:
return nil
default:
}
uid, err := db.compactor.Compact(db.dir, plan, db.blocks)
if err != nil {
return fmt.Errorf("compact %s: %w", plan, err)
}
if err := db.reloadBlocks(); err != nil {
if err := os.RemoveAll(filepath.Join(db.dir, uid.String())); err != nil {
return fmt.Errorf("delete compacted block after failed db reloadBlocks:%s: %w", uid, err)
}
return fmt.Errorf("reloadBlocks blocks: %w", err)
}
}
return nil
}
// getBlock iterates a given block range to find a block by a given id.
// If found it returns the block itself and a boolean to indicate that it was found.
func getBlock(allBlocks []*Block, id ulid.ULID) (*Block, bool) {
for _, b := range allBlocks {
if b.Meta().ULID == id {
return b, true
}
}
return nil, false
}
// reload reloads blocks and truncates the head and its WAL.
func (db *DB) reload() error {
if err := db.reloadBlocks(); err != nil {
return fmt.Errorf("reloadBlocks: %w", err)
}
maxt, ok := db.inOrderBlocksMaxTime()
if !ok {
return nil
}
if err := db.head.Truncate(maxt); err != nil {
return fmt.Errorf("head truncate: %w", err)
}
return nil
}
// reloadBlocks reloads blocks without touching head.
// Blocks that are obsolete due to replacement or retention will be deleted.
func (db *DB) reloadBlocks() (err error) {
defer func() {
if err != nil {
db.metrics.reloadsFailed.Inc()
}
db.metrics.reloads.Inc()
}()
// Now that we reload TSDB every minute, there is high chance for race condition with a reload
// triggered by CleanTombstones(). We need to lock the reload to avoid the situation where
// a normal reload and CleanTombstones try to delete the same block.
db.mtx.Lock()
defer db.mtx.Unlock()
loadable, corrupted, err := openBlocks(db.logger, db.dir, db.blocks, db.chunkPool)
if err != nil {
return err
}
deletableULIDs := db.blocksToDelete(loadable)
deletable := make(map[ulid.ULID]*Block, len(deletableULIDs))
// Mark all parents of loaded blocks as deletable (no matter if they exists). This makes it resilient against the process
// crashing towards the end of a compaction but before deletions. By doing that, we can pick up the deletion where it left off during a crash.
for _, block := range loadable {
if _, ok := deletableULIDs[block.meta.ULID]; ok {
deletable[block.meta.ULID] = block
}
for _, b := range block.Meta().Compaction.Parents {
if _, ok := corrupted[b.ULID]; ok {
delete(corrupted, b.ULID)
level.Warn(db.logger).Log("msg", "Found corrupted block, but replaced by compacted one so it's safe to delete. This should not happen with atomic deletes.", "block", b.ULID)
}
deletable[b.ULID] = nil
}
}
if len(corrupted) > 0 {
// Corrupted but no child loaded for it.
// Close all new blocks to release the lock for windows.
for _, block := range loadable {
if _, open := getBlock(db.blocks, block.Meta().ULID); !open {
block.Close()
}
}
errs := tsdb_errors.NewMulti()
for ulid, err := range corrupted {
if err != nil {
errs.Add(fmt.Errorf("corrupted block %s: %w", ulid.String(), err))
}
}
return errs.Err()
}
var (
toLoad []*Block
blocksSize int64
)
// All deletable blocks should be unloaded.
// NOTE: We need to loop through loadable one more time as there might be loadable ready to be removed (replaced by compacted block).
for _, block := range loadable {
if _, ok := deletable[block.Meta().ULID]; ok {
deletable[block.Meta().ULID] = block
continue
}
toLoad = append(toLoad, block)
blocksSize += block.Size()
}
db.metrics.blocksBytes.Set(float64(blocksSize))
slices.SortFunc(toLoad, func(a, b *Block) int {
switch {
case a.Meta().MinTime < b.Meta().MinTime:
return -1
case a.Meta().MinTime > b.Meta().MinTime:
return 1
default:
return 0
}
})
// Swap new blocks first for subsequently created readers to be seen.
oldBlocks := db.blocks
db.blocks = toLoad
blockMetas := make([]BlockMeta, 0, len(toLoad))
for _, b := range toLoad {
blockMetas = append(blockMetas, b.Meta())
}
if overlaps := OverlappingBlocks(blockMetas); len(overlaps) > 0 {
level.Warn(db.logger).Log("msg", "Overlapping blocks found during reloadBlocks", "detail", overlaps.String())
}
// Append blocks to old, deletable blocks, so we can close them.
for _, b := range oldBlocks {
if _, ok := deletable[b.Meta().ULID]; ok {
deletable[b.Meta().ULID] = b
}
}
if err := db.deleteBlocks(deletable); err != nil {
return fmt.Errorf("delete %v blocks: %w", len(deletable), err)
}
return nil
}
func openBlocks(l log.Logger, dir string, loaded []*Block, chunkPool chunkenc.Pool) (blocks []*Block, corrupted map[ulid.ULID]error, err error) {
bDirs, err := blockDirs(dir)
if err != nil {
return nil, nil, fmt.Errorf("find blocks: %w", err)
}
corrupted = make(map[ulid.ULID]error)
for _, bDir := range bDirs {
meta, _, err := readMetaFile(bDir)
if err != nil {
level.Error(l).Log("msg", "Failed to read meta.json for a block during reloadBlocks. Skipping", "dir", bDir, "err", err)
continue
}
// See if we already have the block in memory or open it otherwise.
block, open := getBlock(loaded, meta.ULID)
if !open {
block, err = OpenBlock(l, bDir, chunkPool)
if err != nil {
corrupted[meta.ULID] = err
continue
}
}
blocks = append(blocks, block)
}
return blocks, corrupted, nil
}
// DefaultBlocksToDelete returns a filter which decides time based and size based
// retention from the options of the db.
func DefaultBlocksToDelete(db *DB) BlocksToDeleteFunc {
return func(blocks []*Block) map[ulid.ULID]struct{} {
return deletableBlocks(db, blocks)
}
}
// deletableBlocks returns all currently loaded blocks past retention policy or already compacted into a new block.
func deletableBlocks(db *DB, blocks []*Block) map[ulid.ULID]struct{} {
deletable := make(map[ulid.ULID]struct{})
// Sort the blocks by time - newest to oldest (largest to smallest timestamp).
// This ensures that the retentions will remove the oldest blocks.
slices.SortFunc(blocks, func(a, b *Block) int {
switch {
case b.Meta().MaxTime < a.Meta().MaxTime:
return -1
case b.Meta().MaxTime > a.Meta().MaxTime:
return 1
default:
return 0
}
})
for _, block := range blocks {
if block.Meta().Compaction.Deletable {
deletable[block.Meta().ULID] = struct{}{}
}
}
for ulid := range BeyondTimeRetention(db, blocks) {
deletable[ulid] = struct{}{}
}
for ulid := range BeyondSizeRetention(db, blocks) {
deletable[ulid] = struct{}{}
}
return deletable
}
// BeyondTimeRetention returns those blocks which are beyond the time retention
// set in the db options.
func BeyondTimeRetention(db *DB, blocks []*Block) (deletable map[ulid.ULID]struct{}) {
// Time retention is disabled or no blocks to work with.
if len(blocks) == 0 || db.opts.RetentionDuration == 0 {
return
}
deletable = make(map[ulid.ULID]struct{})
for i, block := range blocks {
// The difference between the first block and this block is greater than or equal to
// the retention period so any blocks after that are added as deletable.
if i > 0 && blocks[0].Meta().MaxTime-block.Meta().MaxTime >= db.opts.RetentionDuration {
for _, b := range blocks[i:] {
deletable[b.meta.ULID] = struct{}{}
}
db.metrics.timeRetentionCount.Inc()
break
}
}
return deletable
}
// BeyondSizeRetention returns those blocks which are beyond the size retention
// set in the db options.
func BeyondSizeRetention(db *DB, blocks []*Block) (deletable map[ulid.ULID]struct{}) {
// Size retention is disabled or no blocks to work with.
if len(blocks) == 0 || db.opts.MaxBytes <= 0 {
return
}
deletable = make(map[ulid.ULID]struct{})
// Initializing size counter with WAL size and Head chunks
// written to disk, as that is part of the retention strategy.
blocksSize := db.Head().Size()
for i, block := range blocks {
blocksSize += block.Size()
if blocksSize > db.opts.MaxBytes {
// Add this and all following blocks for deletion.
for _, b := range blocks[i:] {
deletable[b.meta.ULID] = struct{}{}
}
db.metrics.sizeRetentionCount.Inc()
break
}
}
return deletable
}
// deleteBlocks closes the block if loaded and deletes blocks from the disk if exists.
// When the map contains a non nil block object it means it is loaded in memory
// so needs to be closed first as it might need to wait for pending readers to complete.
func (db *DB) deleteBlocks(blocks map[ulid.ULID]*Block) error {
for ulid, block := range blocks {
if block != nil {
if err := block.Close(); err != nil {
level.Warn(db.logger).Log("msg", "Closing block failed", "err", err, "block", ulid)
}
}
toDelete := filepath.Join(db.dir, ulid.String())
switch _, err := os.Stat(toDelete); {
case os.IsNotExist(err):
// Noop.
continue
case err != nil:
return fmt.Errorf("stat dir %v: %w", toDelete, err)
}
// Replace atomically to avoid partial block when process would crash during deletion.
tmpToDelete := filepath.Join(db.dir, fmt.Sprintf("%s%s", ulid, tmpForDeletionBlockDirSuffix))
if err := fileutil.Replace(toDelete, tmpToDelete); err != nil {
return fmt.Errorf("replace of obsolete block for deletion %s: %w", ulid, err)
}
if err := os.RemoveAll(tmpToDelete); err != nil {
return fmt.Errorf("delete obsolete block %s: %w", ulid, err)
}
level.Info(db.logger).Log("msg", "Deleting obsolete block", "block", ulid)
}
return nil
}
// TimeRange specifies minTime and maxTime range.
type TimeRange struct {
Min, Max int64
}
// Overlaps contains overlapping blocks aggregated by overlapping range.
type Overlaps map[TimeRange][]BlockMeta
// String returns human readable string form of overlapped blocks.
func (o Overlaps) String() string {
var res []string
for r, overlaps := range o {
var groups []string
for _, m := range overlaps {
groups = append(groups, fmt.Sprintf(
"<ulid: %s, mint: %d, maxt: %d, range: %s>",
m.ULID.String(),
m.MinTime,
m.MaxTime,
(time.Duration((m.MaxTime-m.MinTime)/1000)*time.Second).String(),
))
}
res = append(res, fmt.Sprintf(
"[mint: %d, maxt: %d, range: %s, blocks: %d]: %s",
r.Min, r.Max,
(time.Duration((r.Max-r.Min)/1000)*time.Second).String(),
len(overlaps),
strings.Join(groups, ", ")),
)
}
return strings.Join(res, "\n")
}
// OverlappingBlocks returns all overlapping blocks from given meta files.
func OverlappingBlocks(bm []BlockMeta) Overlaps {
if len(bm) <= 1 {
return nil
}
var (
overlaps [][]BlockMeta
// pending contains not ended blocks in regards to "current" timestamp.
pending = []BlockMeta{bm[0]}
// continuousPending helps to aggregate same overlaps to single group.
continuousPending = true
)
// We have here blocks sorted by minTime. We iterate over each block and treat its minTime as our "current" timestamp.
// We check if any of the pending block finished (blocks that we have seen before, but their maxTime was still ahead current
// timestamp). If not, it means they overlap with our current block. In the same time current block is assumed pending.
for _, b := range bm[1:] {
var newPending []BlockMeta
for _, p := range pending {
// "b.MinTime" is our current time.
if b.MinTime >= p.MaxTime {
continuousPending = false
continue
}
// "p" overlaps with "b" and "p" is still pending.
newPending = append(newPending, p)
}
// Our block "b" is now pending.
pending = append(newPending, b)
if len(newPending) == 0 {
// No overlaps.
continue
}
if continuousPending && len(overlaps) > 0 {
overlaps[len(overlaps)-1] = append(overlaps[len(overlaps)-1], b)
continue
}
overlaps = append(overlaps, append(newPending, b))
// Start new pendings.
continuousPending = true
}
// Fetch the critical overlapped time range foreach overlap groups.
overlapGroups := Overlaps{}
for _, overlap := range overlaps {
minRange := TimeRange{Min: 0, Max: math.MaxInt64}
for _, b := range overlap {
if minRange.Max > b.MaxTime {
minRange.Max = b.MaxTime
}
if minRange.Min < b.MinTime {
minRange.Min = b.MinTime
}
}
overlapGroups[minRange] = overlap
}
return overlapGroups
}
func (db *DB) String() string {
return "HEAD"
}
// Blocks returns the databases persisted blocks.
func (db *DB) Blocks() []*Block {
db.mtx.RLock()
defer db.mtx.RUnlock()
return db.blocks
}
// inOrderBlocksMaxTime returns the max time among the blocks that were not totally created
// out of out-of-order data. If the returned boolean is true, it means there is at least
// one such block.
func (db *DB) inOrderBlocksMaxTime() (maxt int64, ok bool) {
maxt, ok = int64(math.MinInt64), false
// If blocks are overlapping, last block might not have the max time. So check all blocks.
for _, b := range db.Blocks() {
if !b.meta.Compaction.FromOutOfOrder() && b.meta.MaxTime > maxt {
ok = true
maxt = b.meta.MaxTime
}
}
return maxt, ok
}
// Head returns the databases's head.
func (db *DB) Head() *Head {
return db.head
}
// Close the partition.
func (db *DB) Close() error {
close(db.stopc)
if db.compactCancel != nil {
db.compactCancel()
}
<-db.donec
db.mtx.Lock()
defer db.mtx.Unlock()
var g errgroup.Group
// blocks also contains all head blocks.
for _, pb := range db.blocks {
g.Go(pb.Close)
}
errs := tsdb_errors.NewMulti(g.Wait(), db.locker.Release())
if db.head != nil {
errs.Add(db.head.Close())
}
return errs.Err()
}
// DisableCompactions disables auto compactions.
func (db *DB) DisableCompactions() {
db.autoCompactMtx.Lock()
defer db.autoCompactMtx.Unlock()
db.autoCompact = false
level.Info(db.logger).Log("msg", "Compactions disabled")
}
// EnableCompactions enables auto compactions.
func (db *DB) EnableCompactions() {
db.autoCompactMtx.Lock()
defer db.autoCompactMtx.Unlock()
db.autoCompact = true
level.Info(db.logger).Log("msg", "Compactions enabled")
}
// ForceHeadMMap is intended for use only in tests and benchmarks.
func (db *DB) ForceHeadMMap() {
db.head.mmapHeadChunks()
}
// Snapshot writes the current data to the directory. If withHead is set to true it
// will create a new block containing all data that's currently in the memory buffer/WAL.
func (db *DB) Snapshot(dir string, withHead bool) error {
if dir == db.dir {
return fmt.Errorf("cannot snapshot into base directory")
}
if _, err := ulid.ParseStrict(dir); err == nil {
return fmt.Errorf("dir must not be a valid ULID")
}
db.cmtx.Lock()
defer db.cmtx.Unlock()
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
level.Info(db.logger).Log("msg", "Snapshotting block", "block", b)
if err := b.Snapshot(dir); err != nil {
return fmt.Errorf("error snapshotting block: %s: %w", b.Dir(), err)
}
}
if !withHead {
return nil
}
mint := db.head.MinTime()
maxt := db.head.MaxTime()
head := NewRangeHead(db.head, mint, maxt)
// Add +1 millisecond to block maxt because block intervals are half-open: [b.MinTime, b.MaxTime).
// Because of this block intervals are always +1 than the total samples it includes.
if _, err := db.compactor.Write(dir, head, mint, maxt+1, nil); err != nil {
return fmt.Errorf("snapshot head block: %w", err)
}
return nil
}
// Querier returns a new querier over the data partition for the given time range.
func (db *DB) Querier(mint, maxt int64) (_ storage.Querier, err error) {
var blocks []BlockReader
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
blocks = append(blocks, b)
}
}
blockQueriers := make([]storage.Querier, 0, len(blocks)+2) // +2 to allow for possible in-order and OOO head queriers
defer func() {
if err != nil {
// If we fail, all previously opened queriers must be closed.
for _, q := range blockQueriers {
// TODO(bwplotka): Handle error.
_ = q.Close()
}
}
}()
if maxt >= db.head.MinTime() {
rh := NewRangeHead(db.head, mint, maxt)
var err error
inOrderHeadQuerier, err := NewBlockQuerier(rh, mint, maxt)
if err != nil {
return nil, fmt.Errorf("open block querier for head %s: %w", rh, err)
}
// Getting the querier above registers itself in the queue that the truncation waits on.
// So if the querier is currently not colliding with any truncation, we can continue to use it and still
// won't run into a race later since any truncation that comes after will wait on this querier if it overlaps.
shouldClose, getNew, newMint := db.head.IsQuerierCollidingWithTruncation(mint, maxt)
if shouldClose {
if err := inOrderHeadQuerier.Close(); err != nil {
return nil, fmt.Errorf("closing head block querier %s: %w", rh, err)
}
inOrderHeadQuerier = nil
}
if getNew {
rh := NewRangeHead(db.head, newMint, maxt)
inOrderHeadQuerier, err = NewBlockQuerier(rh, newMint, maxt)
if err != nil {
return nil, fmt.Errorf("open block querier for head while getting new querier %s: %w", rh, err)
}
}
if inOrderHeadQuerier != nil {
blockQueriers = append(blockQueriers, inOrderHeadQuerier)
}
}
if overlapsClosedInterval(mint, maxt, db.head.MinOOOTime(), db.head.MaxOOOTime()) {
rh := NewOOORangeHead(db.head, mint, maxt, db.lastGarbageCollectedMmapRef)
var err error
outOfOrderHeadQuerier, err := NewBlockQuerier(rh, mint, maxt)
if err != nil {
// If NewBlockQuerier() failed, make sure to clean up the pending read created by NewOOORangeHead.
rh.isoState.Close()
return nil, fmt.Errorf("open block querier for ooo head %s: %w", rh, err)
}
blockQueriers = append(blockQueriers, outOfOrderHeadQuerier)
}
for _, b := range blocks {
q, err := NewBlockQuerier(b, mint, maxt)
if err != nil {
return nil, fmt.Errorf("open querier for block %s: %w", b, err)
}
blockQueriers = append(blockQueriers, q)
}
return storage.NewMergeQuerier(blockQueriers, nil, storage.ChainedSeriesMerge), nil
}
// blockChunkQuerierForRange returns individual block chunk queriers from the persistent blocks, in-order head block, and the
// out-of-order head block, overlapping with the given time range.
func (db *DB) blockChunkQuerierForRange(mint, maxt int64) (_ []storage.ChunkQuerier, err error) {
var blocks []BlockReader
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
blocks = append(blocks, b)
}
}
blockQueriers := make([]storage.ChunkQuerier, 0, len(blocks)+2) // +2 to allow for possible in-order and OOO head queriers
defer func() {
if err != nil {
// If we fail, all previously opened queriers must be closed.
for _, q := range blockQueriers {
// TODO(bwplotka): Handle error.
_ = q.Close()
}
}
}()
if maxt >= db.head.MinTime() {
rh := NewRangeHead(db.head, mint, maxt)
inOrderHeadQuerier, err := NewBlockChunkQuerier(rh, mint, maxt)
if err != nil {
return nil, fmt.Errorf("open querier for head %s: %w", rh, err)
}
// Getting the querier above registers itself in the queue that the truncation waits on.
// So if the querier is currently not colliding with any truncation, we can continue to use it and still
// won't run into a race later since any truncation that comes after will wait on this querier if it overlaps.
shouldClose, getNew, newMint := db.head.IsQuerierCollidingWithTruncation(mint, maxt)
if shouldClose {
if err := inOrderHeadQuerier.Close(); err != nil {
return nil, fmt.Errorf("closing head querier %s: %w", rh, err)
}
inOrderHeadQuerier = nil
}
if getNew {
rh := NewRangeHead(db.head, newMint, maxt)
inOrderHeadQuerier, err = NewBlockChunkQuerier(rh, newMint, maxt)
if err != nil {
return nil, fmt.Errorf("open querier for head while getting new querier %s: %w", rh, err)
}
}
if inOrderHeadQuerier != nil {
blockQueriers = append(blockQueriers, inOrderHeadQuerier)
}
}
if overlapsClosedInterval(mint, maxt, db.head.MinOOOTime(), db.head.MaxOOOTime()) {
rh := NewOOORangeHead(db.head, mint, maxt, db.lastGarbageCollectedMmapRef)
outOfOrderHeadQuerier, err := NewBlockChunkQuerier(rh, mint, maxt)
if err != nil {
return nil, fmt.Errorf("open block chunk querier for ooo head %s: %w", rh, err)
}
blockQueriers = append(blockQueriers, outOfOrderHeadQuerier)
}
for _, b := range blocks {
q, err := NewBlockChunkQuerier(b, mint, maxt)
if err != nil {
return nil, fmt.Errorf("open querier for block %s: %w", b, err)
}
blockQueriers = append(blockQueriers, q)
}
return blockQueriers, nil
}
// ChunkQuerier returns a new chunk querier over the data partition for the given time range.
func (db *DB) ChunkQuerier(mint, maxt int64) (storage.ChunkQuerier, error) {
blockQueriers, err := db.blockChunkQuerierForRange(mint, maxt)
if err != nil {
return nil, err
}
return storage.NewMergeChunkQuerier(blockQueriers, nil, storage.NewCompactingChunkSeriesMerger(storage.ChainedSeriesMerge)), nil
}
func (db *DB) ExemplarQuerier(ctx context.Context) (storage.ExemplarQuerier, error) {
return db.head.exemplars.ExemplarQuerier(ctx)
}
func rangeForTimestamp(t, width int64) (maxt int64) {
return (t/width)*width + width
}
// Delete implements deletion of metrics. It only has atomicity guarantees on a per-block basis.
func (db *DB) Delete(ctx context.Context, mint, maxt int64, ms ...*labels.Matcher) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
var g errgroup.Group
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
g.Go(func(b *Block) func() error {
return func() error { return b.Delete(ctx, mint, maxt, ms...) }
}(b))
}
}
if db.head.OverlapsClosedInterval(mint, maxt) {
g.Go(func() error {
return db.head.Delete(ctx, mint, maxt, ms...)
})
}
return g.Wait()
}
// CleanTombstones re-writes any blocks with tombstones.
func (db *DB) CleanTombstones() (err error) {
db.cmtx.Lock()
defer db.cmtx.Unlock()
start := time.Now()
defer func() {
db.metrics.tombCleanTimer.Observe(time.Since(start).Seconds())
}()
cleanUpCompleted := false
// Repeat cleanup until there is no tombstones left.
for !cleanUpCompleted {
cleanUpCompleted = true
for _, pb := range db.Blocks() {
uid, safeToDelete, cleanErr := pb.CleanTombstones(db.Dir(), db.compactor)
if cleanErr != nil {
return fmt.Errorf("clean tombstones: %s: %w", pb.Dir(), cleanErr)
}
if !safeToDelete {
// There was nothing to clean.
continue
}
// In case tombstones of the old block covers the whole block,
// then there would be no resultant block to tell the parent.
// The lock protects against race conditions when deleting blocks
// during an already running reload.
db.mtx.Lock()
pb.meta.Compaction.Deletable = safeToDelete
db.mtx.Unlock()
cleanUpCompleted = false
if err = db.reloadBlocks(); err == nil { // Will try to delete old block.
// Successful reload will change the existing blocks.
// We need to loop over the new set of blocks.
break
}
// Delete new block if it was created.
if uid != nil && *uid != (ulid.ULID{}) {
dir := filepath.Join(db.Dir(), uid.String())
if err := os.RemoveAll(dir); err != nil {
level.Error(db.logger).Log("msg", "failed to delete block after failed `CleanTombstones`", "dir", dir, "err", err)
}
}
if err != nil {
return fmt.Errorf("reload blocks: %w", err)
}
return nil
}
}
return nil
}
func (db *DB) SetWriteNotified(wn wlog.WriteNotified) {
db.writeNotified = wn
// It's possible we already created the head struct, so we should also set the WN for that.
db.head.writeNotified = wn
}
func isBlockDir(fi fs.DirEntry) bool {
if !fi.IsDir() {
return false
}
_, err := ulid.ParseStrict(fi.Name())
return err == nil
}
// isTmpDir returns true if the given file-info contains a block ULID, a checkpoint prefix,
// or a chunk snapshot prefix and a tmp extension.
func isTmpDir(fi fs.DirEntry) bool {
if !fi.IsDir() {
return false
}
fn := fi.Name()
ext := filepath.Ext(fn)
if ext == tmpForDeletionBlockDirSuffix || ext == tmpForCreationBlockDirSuffix || ext == tmpLegacy {
if strings.HasPrefix(fn, "checkpoint.") {
return true
}
if strings.HasPrefix(fn, chunkSnapshotPrefix) {
return true
}
if _, err := ulid.ParseStrict(fn[:len(fn)-len(ext)]); err == nil {
return true
}
}
return false
}
func blockDirs(dir string) ([]string, error) {
files, err := os.ReadDir(dir)
if err != nil {
return nil, err
}
var dirs []string
for _, f := range files {
if isBlockDir(f) {
dirs = append(dirs, filepath.Join(dir, f.Name()))
}
}
return dirs, nil
}
func exponential(d, min, max time.Duration) time.Duration {
d *= 2
if d < min {
d = min
}
if d > max {
d = max
}
return d
}