|
|
// Copyright 2014 The Prometheus Authors
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
// You may obtain a copy of the License at
|
|
|
//
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
//
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
// See the License for the specific language governing permissions and
|
|
|
// limitations under the License.
|
|
|
|
|
|
package local
|
|
|
|
|
|
import (
|
|
|
"fmt"
|
|
|
"hash/fnv"
|
|
|
"math"
|
|
|
"math/rand"
|
|
|
"os"
|
|
|
"testing"
|
|
|
"testing/quick"
|
|
|
"time"
|
|
|
|
|
|
"github.com/prometheus/common/log"
|
|
|
"github.com/prometheus/common/model"
|
|
|
|
|
|
"github.com/prometheus/prometheus/storage/metric"
|
|
|
"github.com/prometheus/prometheus/util/testutil"
|
|
|
)
|
|
|
|
|
|
func TestMatches(t *testing.T) {
|
|
|
storage, closer := NewTestStorage(t, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
storage.archiveHighWatermark = 90
|
|
|
samples := make([]*model.Sample, 100)
|
|
|
fingerprints := make(model.Fingerprints, 100)
|
|
|
|
|
|
for i := range samples {
|
|
|
metric := model.Metric{
|
|
|
model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i)),
|
|
|
"label1": model.LabelValue(fmt.Sprintf("test_%d", i/10)),
|
|
|
"label2": model.LabelValue(fmt.Sprintf("test_%d", (i+5)/10)),
|
|
|
"all": "const",
|
|
|
}
|
|
|
samples[i] = &model.Sample{
|
|
|
Metric: metric,
|
|
|
Timestamp: model.Time(i),
|
|
|
Value: model.SampleValue(i),
|
|
|
}
|
|
|
fingerprints[i] = metric.FastFingerprint()
|
|
|
}
|
|
|
for _, s := range samples {
|
|
|
storage.Append(s)
|
|
|
}
|
|
|
storage.WaitForIndexing()
|
|
|
|
|
|
// Archive every tenth metric.
|
|
|
for i, fp := range fingerprints {
|
|
|
if i%10 != 0 {
|
|
|
continue
|
|
|
}
|
|
|
s, ok := storage.fpToSeries.get(fp)
|
|
|
if !ok {
|
|
|
t.Fatal("could not retrieve series for fp", fp)
|
|
|
}
|
|
|
storage.fpLocker.Lock(fp)
|
|
|
storage.persistence.archiveMetric(fp, s.metric, s.firstTime(), s.lastTime)
|
|
|
storage.fpLocker.Unlock(fp)
|
|
|
}
|
|
|
|
|
|
newMatcher := func(matchType metric.MatchType, name model.LabelName, value model.LabelValue) *metric.LabelMatcher {
|
|
|
lm, err := metric.NewLabelMatcher(matchType, name, value)
|
|
|
if err != nil {
|
|
|
t.Fatalf("error creating label matcher: %s", err)
|
|
|
}
|
|
|
return lm
|
|
|
}
|
|
|
|
|
|
var matcherTests = []struct {
|
|
|
matchers metric.LabelMatchers
|
|
|
expected model.Fingerprints
|
|
|
}{
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{newMatcher(metric.Equal, "label1", "x")},
|
|
|
expected: model.Fingerprints{},
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{newMatcher(metric.Equal, "label1", "test_0")},
|
|
|
expected: fingerprints[:10],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "label1", "test_0"),
|
|
|
newMatcher(metric.Equal, "label2", "test_1"),
|
|
|
},
|
|
|
expected: fingerprints[5:10],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "all", "const"),
|
|
|
newMatcher(metric.NotEqual, "label1", "x"),
|
|
|
},
|
|
|
expected: fingerprints,
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "all", "const"),
|
|
|
newMatcher(metric.NotEqual, "label1", "test_0"),
|
|
|
},
|
|
|
expected: fingerprints[10:],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "all", "const"),
|
|
|
newMatcher(metric.NotEqual, "label1", "test_0"),
|
|
|
newMatcher(metric.NotEqual, "label1", "test_1"),
|
|
|
newMatcher(metric.NotEqual, "label1", "test_2"),
|
|
|
},
|
|
|
expected: fingerprints[30:],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "label1", ""),
|
|
|
},
|
|
|
expected: fingerprints[:0],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.NotEqual, "label1", "test_0"),
|
|
|
newMatcher(metric.Equal, "label1", ""),
|
|
|
},
|
|
|
expected: fingerprints[:0],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.NotEqual, "label1", "test_0"),
|
|
|
newMatcher(metric.Equal, "label2", ""),
|
|
|
},
|
|
|
expected: fingerprints[:0],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "all", "const"),
|
|
|
newMatcher(metric.NotEqual, "label1", "test_0"),
|
|
|
newMatcher(metric.Equal, "not_existant", ""),
|
|
|
},
|
|
|
expected: fingerprints[10:],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.RegexMatch, "label1", `test_[3-5]`),
|
|
|
},
|
|
|
expected: fingerprints[30:60],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "all", "const"),
|
|
|
newMatcher(metric.RegexNoMatch, "label1", `test_[3-5]`),
|
|
|
},
|
|
|
expected: append(append(model.Fingerprints{}, fingerprints[:30]...), fingerprints[60:]...),
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.RegexMatch, "label1", `test_[3-5]`),
|
|
|
newMatcher(metric.RegexMatch, "label2", `test_[4-6]`),
|
|
|
},
|
|
|
expected: fingerprints[35:60],
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.RegexMatch, "label1", `test_[3-5]`),
|
|
|
newMatcher(metric.NotEqual, "label2", `test_4`),
|
|
|
},
|
|
|
expected: append(append(model.Fingerprints{}, fingerprints[30:35]...), fingerprints[45:60]...),
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "label1", `nonexistent`),
|
|
|
newMatcher(metric.RegexMatch, "label2", `test`),
|
|
|
},
|
|
|
expected: model.Fingerprints{},
|
|
|
},
|
|
|
{
|
|
|
matchers: metric.LabelMatchers{
|
|
|
newMatcher(metric.Equal, "label1", `test_0`),
|
|
|
newMatcher(metric.RegexMatch, "label2", `nonexistent`),
|
|
|
},
|
|
|
expected: model.Fingerprints{},
|
|
|
},
|
|
|
}
|
|
|
|
|
|
for _, mt := range matcherTests {
|
|
|
res := storage.MetricsForLabelMatchers(
|
|
|
model.Earliest, model.Latest,
|
|
|
mt.matchers...,
|
|
|
)
|
|
|
if len(mt.expected) != len(res) {
|
|
|
t.Fatalf("expected %d matches for %q, found %d", len(mt.expected), mt.matchers, len(res))
|
|
|
}
|
|
|
for fp1 := range res {
|
|
|
found := false
|
|
|
for _, fp2 := range mt.expected {
|
|
|
if fp1 == fp2 {
|
|
|
found = true
|
|
|
break
|
|
|
}
|
|
|
}
|
|
|
if !found {
|
|
|
t.Errorf("expected fingerprint %s for %q not in result", fp1, mt.matchers)
|
|
|
}
|
|
|
}
|
|
|
// Smoketest for from/through.
|
|
|
if len(storage.MetricsForLabelMatchers(
|
|
|
model.Earliest, -10000,
|
|
|
mt.matchers...,
|
|
|
)) > 0 {
|
|
|
t.Error("expected no matches with 'through' older than any sample")
|
|
|
}
|
|
|
if len(storage.MetricsForLabelMatchers(
|
|
|
10000, model.Latest,
|
|
|
mt.matchers...,
|
|
|
)) > 0 {
|
|
|
t.Error("expected no matches with 'from' newer than any sample")
|
|
|
}
|
|
|
// Now the tricky one, cut out something from the middle.
|
|
|
var (
|
|
|
from model.Time = 25
|
|
|
through model.Time = 75
|
|
|
)
|
|
|
res = storage.MetricsForLabelMatchers(
|
|
|
from, through,
|
|
|
mt.matchers...,
|
|
|
)
|
|
|
expected := model.Fingerprints{}
|
|
|
for _, fp := range mt.expected {
|
|
|
i := 0
|
|
|
for ; fingerprints[i] != fp && i < len(fingerprints); i++ {
|
|
|
}
|
|
|
if i == len(fingerprints) {
|
|
|
t.Fatal("expected fingerprint does not exist")
|
|
|
}
|
|
|
if !model.Time(i).Before(from) && !model.Time(i).After(through) {
|
|
|
expected = append(expected, fp)
|
|
|
}
|
|
|
}
|
|
|
if len(expected) != len(res) {
|
|
|
t.Errorf("expected %d range-limited matches for %q, found %d", len(expected), mt.matchers, len(res))
|
|
|
}
|
|
|
for fp1 := range res {
|
|
|
found := false
|
|
|
for _, fp2 := range expected {
|
|
|
if fp1 == fp2 {
|
|
|
found = true
|
|
|
break
|
|
|
}
|
|
|
}
|
|
|
if !found {
|
|
|
t.Errorf("expected fingerprint %s for %q not in range-limited result", fp1, mt.matchers)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestFingerprintsForLabels(t *testing.T) {
|
|
|
storage, closer := NewTestStorage(t, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
samples := make([]*model.Sample, 100)
|
|
|
fingerprints := make(model.Fingerprints, 100)
|
|
|
|
|
|
for i := range samples {
|
|
|
metric := model.Metric{
|
|
|
model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i)),
|
|
|
"label1": model.LabelValue(fmt.Sprintf("test_%d", i/10)),
|
|
|
"label2": model.LabelValue(fmt.Sprintf("test_%d", (i+5)/10)),
|
|
|
}
|
|
|
samples[i] = &model.Sample{
|
|
|
Metric: metric,
|
|
|
Timestamp: model.Time(i),
|
|
|
Value: model.SampleValue(i),
|
|
|
}
|
|
|
fingerprints[i] = metric.FastFingerprint()
|
|
|
}
|
|
|
for _, s := range samples {
|
|
|
storage.Append(s)
|
|
|
}
|
|
|
storage.WaitForIndexing()
|
|
|
|
|
|
var matcherTests = []struct {
|
|
|
pairs []model.LabelPair
|
|
|
expected model.Fingerprints
|
|
|
}{
|
|
|
{
|
|
|
pairs: []model.LabelPair{{"label1", "x"}},
|
|
|
expected: fingerprints[:0],
|
|
|
},
|
|
|
{
|
|
|
pairs: []model.LabelPair{{"label1", "test_0"}},
|
|
|
expected: fingerprints[:10],
|
|
|
},
|
|
|
{
|
|
|
pairs: []model.LabelPair{
|
|
|
{"label1", "test_0"},
|
|
|
{"label1", "test_1"},
|
|
|
},
|
|
|
expected: fingerprints[:0],
|
|
|
},
|
|
|
{
|
|
|
pairs: []model.LabelPair{
|
|
|
{"label1", "test_0"},
|
|
|
{"label2", "test_1"},
|
|
|
},
|
|
|
expected: fingerprints[5:10],
|
|
|
},
|
|
|
{
|
|
|
pairs: []model.LabelPair{
|
|
|
{"label1", "test_1"},
|
|
|
{"label2", "test_2"},
|
|
|
},
|
|
|
expected: fingerprints[15:20],
|
|
|
},
|
|
|
}
|
|
|
|
|
|
for _, mt := range matcherTests {
|
|
|
resfps := storage.fingerprintsForLabelPairs(mt.pairs...)
|
|
|
if len(mt.expected) != len(resfps) {
|
|
|
t.Fatalf("expected %d matches for %q, found %d", len(mt.expected), mt.pairs, len(resfps))
|
|
|
}
|
|
|
for fp1 := range resfps {
|
|
|
found := false
|
|
|
for _, fp2 := range mt.expected {
|
|
|
if fp1 == fp2 {
|
|
|
found = true
|
|
|
break
|
|
|
}
|
|
|
}
|
|
|
if !found {
|
|
|
t.Errorf("expected fingerprint %s for %q not in result", fp1, mt.pairs)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
var benchLabelMatchingRes map[model.Fingerprint]metric.Metric
|
|
|
|
|
|
func BenchmarkLabelMatching(b *testing.B) {
|
|
|
s, closer := NewTestStorage(b, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
h := fnv.New64a()
|
|
|
lbl := func(x int) model.LabelValue {
|
|
|
h.Reset()
|
|
|
h.Write([]byte(fmt.Sprintf("%d", x)))
|
|
|
return model.LabelValue(fmt.Sprintf("%d", h.Sum64()))
|
|
|
}
|
|
|
|
|
|
M := 32
|
|
|
met := model.Metric{}
|
|
|
for i := 0; i < M; i++ {
|
|
|
met["label_a"] = lbl(i)
|
|
|
for j := 0; j < M; j++ {
|
|
|
met["label_b"] = lbl(j)
|
|
|
for k := 0; k < M; k++ {
|
|
|
met["label_c"] = lbl(k)
|
|
|
for l := 0; l < M; l++ {
|
|
|
met["label_d"] = lbl(l)
|
|
|
s.Append(&model.Sample{
|
|
|
Metric: met.Clone(),
|
|
|
Timestamp: 0,
|
|
|
Value: 1,
|
|
|
})
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
newMatcher := func(matchType metric.MatchType, name model.LabelName, value model.LabelValue) *metric.LabelMatcher {
|
|
|
lm, err := metric.NewLabelMatcher(matchType, name, value)
|
|
|
if err != nil {
|
|
|
b.Fatalf("error creating label matcher: %s", err)
|
|
|
}
|
|
|
return lm
|
|
|
}
|
|
|
|
|
|
var matcherTests = []metric.LabelMatchers{
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(1)),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(3)),
|
|
|
newMatcher(metric.Equal, "label_c", lbl(3)),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(3)),
|
|
|
newMatcher(metric.Equal, "label_c", lbl(3)),
|
|
|
newMatcher(metric.NotEqual, "label_d", lbl(3)),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(3)),
|
|
|
newMatcher(metric.Equal, "label_b", lbl(3)),
|
|
|
newMatcher(metric.Equal, "label_c", lbl(3)),
|
|
|
newMatcher(metric.NotEqual, "label_d", lbl(3)),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.RegexMatch, "label_a", ".+"),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(3)),
|
|
|
newMatcher(metric.RegexMatch, "label_a", ".+"),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(1)),
|
|
|
newMatcher(metric.RegexMatch, "label_c", "("+lbl(3)+"|"+lbl(10)+")"),
|
|
|
},
|
|
|
{
|
|
|
newMatcher(metric.Equal, "label_a", lbl(3)),
|
|
|
newMatcher(metric.Equal, "label_a", lbl(4)),
|
|
|
newMatcher(metric.RegexMatch, "label_c", "("+lbl(3)+"|"+lbl(10)+")"),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
b.ReportAllocs()
|
|
|
b.ResetTimer()
|
|
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
benchLabelMatchingRes = map[model.Fingerprint]metric.Metric{}
|
|
|
for _, mt := range matcherTests {
|
|
|
benchLabelMatchingRes = s.MetricsForLabelMatchers(
|
|
|
model.Earliest, model.Latest,
|
|
|
mt...,
|
|
|
)
|
|
|
}
|
|
|
}
|
|
|
// Stop timer to not count the storage closing.
|
|
|
b.StopTimer()
|
|
|
}
|
|
|
|
|
|
func TestRetentionCutoff(t *testing.T) {
|
|
|
now := model.Now()
|
|
|
insertStart := now.Add(-2 * time.Hour)
|
|
|
|
|
|
s, closer := NewTestStorage(t, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
// Stop maintenance loop to prevent actual purging.
|
|
|
close(s.loopStopping)
|
|
|
<-s.loopStopped
|
|
|
<-s.logThrottlingStopped
|
|
|
// Recreate channel to avoid panic when we really shut down.
|
|
|
s.loopStopping = make(chan struct{})
|
|
|
|
|
|
s.dropAfter = 1 * time.Hour
|
|
|
|
|
|
for i := 0; i < 120; i++ {
|
|
|
smpl := &model.Sample{
|
|
|
Metric: model.Metric{"job": "test"},
|
|
|
Timestamp: insertStart.Add(time.Duration(i) * time.Minute), // 1 minute intervals.
|
|
|
Value: 1,
|
|
|
}
|
|
|
s.Append(smpl)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
var fp model.Fingerprint
|
|
|
for f := range s.fingerprintsForLabelPairs(model.LabelPair{Name: "job", Value: "test"}) {
|
|
|
fp = f
|
|
|
break
|
|
|
}
|
|
|
|
|
|
pl := s.NewPreloader()
|
|
|
defer pl.Close()
|
|
|
|
|
|
// Preload everything.
|
|
|
it := pl.PreloadRange(fp, insertStart, now)
|
|
|
|
|
|
val := it.ValueAtOrBeforeTime(now.Add(-61 * time.Minute))
|
|
|
if val.Timestamp != model.Earliest {
|
|
|
t.Errorf("unexpected result for timestamp before retention period")
|
|
|
}
|
|
|
|
|
|
vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now})
|
|
|
// We get 59 values here because the model.Now() is slightly later
|
|
|
// than our now.
|
|
|
if len(vals) != 59 {
|
|
|
t.Errorf("expected 59 values but got %d", len(vals))
|
|
|
}
|
|
|
if expt := now.Add(-1 * time.Hour).Add(time.Minute); vals[0].Timestamp != expt {
|
|
|
t.Errorf("unexpected timestamp for first sample: %v, expected %v", vals[0].Timestamp.Time(), expt.Time())
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestDropMetrics(t *testing.T) {
|
|
|
now := model.Now()
|
|
|
insertStart := now.Add(-2 * time.Hour)
|
|
|
|
|
|
s, closer := NewTestStorage(t, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
chunkFileExists := func(fp model.Fingerprint) (bool, error) {
|
|
|
f, err := s.persistence.openChunkFileForReading(fp)
|
|
|
if err == nil {
|
|
|
f.Close()
|
|
|
return true, nil
|
|
|
}
|
|
|
if os.IsNotExist(err) {
|
|
|
return false, nil
|
|
|
}
|
|
|
return false, err
|
|
|
}
|
|
|
|
|
|
m1 := model.Metric{model.MetricNameLabel: "test", "n1": "v1"}
|
|
|
m2 := model.Metric{model.MetricNameLabel: "test", "n1": "v2"}
|
|
|
m3 := model.Metric{model.MetricNameLabel: "test", "n1": "v3"}
|
|
|
|
|
|
N := 120000
|
|
|
|
|
|
for j, m := range []model.Metric{m1, m2, m3} {
|
|
|
for i := 0; i < N; i++ {
|
|
|
smpl := &model.Sample{
|
|
|
Metric: m,
|
|
|
Timestamp: insertStart.Add(time.Duration(i) * time.Millisecond), // 1 millisecond intervals.
|
|
|
Value: model.SampleValue(j),
|
|
|
}
|
|
|
s.Append(smpl)
|
|
|
}
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
// Archive m3, but first maintain it so that at least something is written to disk.
|
|
|
fpToBeArchived := m3.FastFingerprint()
|
|
|
s.maintainMemorySeries(fpToBeArchived, 0)
|
|
|
s.fpLocker.Lock(fpToBeArchived)
|
|
|
s.fpToSeries.del(fpToBeArchived)
|
|
|
s.persistence.archiveMetric(fpToBeArchived, m3, 0, insertStart.Add(time.Duration(N-1)*time.Millisecond))
|
|
|
s.fpLocker.Unlock(fpToBeArchived)
|
|
|
|
|
|
fps := s.fingerprintsForLabelPairs(model.LabelPair{Name: model.MetricNameLabel, Value: "test"})
|
|
|
if len(fps) != 3 {
|
|
|
t.Errorf("unexpected number of fingerprints: %d", len(fps))
|
|
|
}
|
|
|
|
|
|
fpList := model.Fingerprints{m1.FastFingerprint(), m2.FastFingerprint(), fpToBeArchived}
|
|
|
|
|
|
s.DropMetricsForFingerprints(fpList[0])
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fps2 := s.fingerprintsForLabelPairs(model.LabelPair{
|
|
|
Name: model.MetricNameLabel, Value: "test",
|
|
|
})
|
|
|
if len(fps2) != 2 {
|
|
|
t.Errorf("unexpected number of fingerprints: %d", len(fps2))
|
|
|
}
|
|
|
|
|
|
_, it := s.preloadChunksForRange(fpList[0], model.Earliest, model.Latest)
|
|
|
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 {
|
|
|
t.Errorf("unexpected number of samples: %d", len(vals))
|
|
|
}
|
|
|
|
|
|
_, it = s.preloadChunksForRange(fpList[1], model.Earliest, model.Latest)
|
|
|
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != N {
|
|
|
t.Errorf("unexpected number of samples: %d", len(vals))
|
|
|
}
|
|
|
exists, err := chunkFileExists(fpList[2])
|
|
|
if err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
if !exists {
|
|
|
t.Errorf("chunk file does not exist for fp=%v", fpList[2])
|
|
|
}
|
|
|
|
|
|
s.DropMetricsForFingerprints(fpList...)
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fps3 := s.fingerprintsForLabelPairs(model.LabelPair{
|
|
|
Name: model.MetricNameLabel, Value: "test",
|
|
|
})
|
|
|
if len(fps3) != 0 {
|
|
|
t.Errorf("unexpected number of fingerprints: %d", len(fps3))
|
|
|
}
|
|
|
|
|
|
_, it = s.preloadChunksForRange(fpList[0], model.Earliest, model.Latest)
|
|
|
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 {
|
|
|
t.Errorf("unexpected number of samples: %d", len(vals))
|
|
|
}
|
|
|
|
|
|
_, it = s.preloadChunksForRange(fpList[1], model.Earliest, model.Latest)
|
|
|
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 {
|
|
|
t.Errorf("unexpected number of samples: %d", len(vals))
|
|
|
}
|
|
|
exists, err = chunkFileExists(fpList[2])
|
|
|
if err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
if exists {
|
|
|
t.Errorf("chunk file still exists for fp=%v", fpList[2])
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestQuarantineMetric(t *testing.T) {
|
|
|
now := model.Now()
|
|
|
insertStart := now.Add(-2 * time.Hour)
|
|
|
|
|
|
s, closer := NewTestStorage(t, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
chunkFileExists := func(fp model.Fingerprint) (bool, error) {
|
|
|
f, err := s.persistence.openChunkFileForReading(fp)
|
|
|
if err == nil {
|
|
|
f.Close()
|
|
|
return true, nil
|
|
|
}
|
|
|
if os.IsNotExist(err) {
|
|
|
return false, nil
|
|
|
}
|
|
|
return false, err
|
|
|
}
|
|
|
|
|
|
m1 := model.Metric{model.MetricNameLabel: "test", "n1": "v1"}
|
|
|
m2 := model.Metric{model.MetricNameLabel: "test", "n1": "v2"}
|
|
|
m3 := model.Metric{model.MetricNameLabel: "test", "n1": "v3"}
|
|
|
|
|
|
N := 120000
|
|
|
|
|
|
for j, m := range []model.Metric{m1, m2, m3} {
|
|
|
for i := 0; i < N; i++ {
|
|
|
smpl := &model.Sample{
|
|
|
Metric: m,
|
|
|
Timestamp: insertStart.Add(time.Duration(i) * time.Millisecond), // 1 millisecond intervals.
|
|
|
Value: model.SampleValue(j),
|
|
|
}
|
|
|
s.Append(smpl)
|
|
|
}
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
// Archive m3, but first maintain it so that at least something is written to disk.
|
|
|
fpToBeArchived := m3.FastFingerprint()
|
|
|
s.maintainMemorySeries(fpToBeArchived, 0)
|
|
|
s.fpLocker.Lock(fpToBeArchived)
|
|
|
s.fpToSeries.del(fpToBeArchived)
|
|
|
s.persistence.archiveMetric(fpToBeArchived, m3, 0, insertStart.Add(time.Duration(N-1)*time.Millisecond))
|
|
|
s.fpLocker.Unlock(fpToBeArchived)
|
|
|
|
|
|
// Corrupt the series file for m3.
|
|
|
f, err := os.Create(s.persistence.fileNameForFingerprint(fpToBeArchived))
|
|
|
if err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
if _, err := f.WriteString("This is clearly not the content of a series file."); err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
if f.Close(); err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
|
|
|
fps := s.fingerprintsForLabelPairs(model.LabelPair{Name: model.MetricNameLabel, Value: "test"})
|
|
|
if len(fps) != 3 {
|
|
|
t.Errorf("unexpected number of fingerprints: %d", len(fps))
|
|
|
}
|
|
|
|
|
|
pl := s.NewPreloader()
|
|
|
// This will access the corrupt file and lead to quarantining.
|
|
|
pl.PreloadInstant(fpToBeArchived, now.Add(-2*time.Hour), time.Minute)
|
|
|
pl.Close()
|
|
|
time.Sleep(time.Second) // Give time to quarantine. TODO(beorn7): Find a better way to wait.
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fps2 := s.fingerprintsForLabelPairs(model.LabelPair{
|
|
|
Name: model.MetricNameLabel, Value: "test",
|
|
|
})
|
|
|
if len(fps2) != 2 {
|
|
|
t.Errorf("unexpected number of fingerprints: %d", len(fps2))
|
|
|
}
|
|
|
|
|
|
exists, err := chunkFileExists(fpToBeArchived)
|
|
|
if err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
if exists {
|
|
|
t.Errorf("chunk file exists for fp=%v", fpToBeArchived)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// TestLoop is just a smoke test for the loop method, if we can switch it on and
|
|
|
// off without disaster.
|
|
|
func TestLoop(t *testing.T) {
|
|
|
if testing.Short() {
|
|
|
t.Skip("Skipping test in short mode.")
|
|
|
}
|
|
|
samples := make(model.Samples, 1000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i) * 0.2),
|
|
|
}
|
|
|
}
|
|
|
directory := testutil.NewTemporaryDirectory("test_storage", t)
|
|
|
defer directory.Close()
|
|
|
o := &MemorySeriesStorageOptions{
|
|
|
MemoryChunks: 50,
|
|
|
MaxChunksToPersist: 1000000,
|
|
|
PersistenceRetentionPeriod: 24 * 7 * time.Hour,
|
|
|
PersistenceStoragePath: directory.Path(),
|
|
|
CheckpointInterval: 250 * time.Millisecond,
|
|
|
SyncStrategy: Adaptive,
|
|
|
MinShrinkRatio: 0.1,
|
|
|
}
|
|
|
storage := NewMemorySeriesStorage(o)
|
|
|
if err := storage.Start(); err != nil {
|
|
|
t.Errorf("Error starting storage: %s", err)
|
|
|
}
|
|
|
for _, s := range samples {
|
|
|
storage.Append(s)
|
|
|
}
|
|
|
storage.WaitForIndexing()
|
|
|
series, _ := storage.(*memorySeriesStorage).fpToSeries.get(model.Metric{}.FastFingerprint())
|
|
|
cdsBefore := len(series.chunkDescs)
|
|
|
time.Sleep(fpMaxWaitDuration + time.Second) // TODO(beorn7): Ugh, need to wait for maintenance to kick in.
|
|
|
cdsAfter := len(series.chunkDescs)
|
|
|
storage.Stop()
|
|
|
if cdsBefore <= cdsAfter {
|
|
|
t.Errorf(
|
|
|
"Number of chunk descriptors should have gone down by now. Got before %d, after %d.",
|
|
|
cdsBefore, cdsAfter,
|
|
|
)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func testChunk(t *testing.T, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 500000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(i),
|
|
|
Value: model.SampleValue(float64(i) * 0.2),
|
|
|
}
|
|
|
}
|
|
|
s, closer := NewTestStorage(t, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
for m := range s.fpToSeries.iter() {
|
|
|
s.fpLocker.Lock(m.fp)
|
|
|
defer s.fpLocker.Unlock(m.fp) // TODO remove, see below
|
|
|
var values []model.SamplePair
|
|
|
for _, cd := range m.series.chunkDescs {
|
|
|
if cd.isEvicted() {
|
|
|
continue
|
|
|
}
|
|
|
it := cd.c.newIterator()
|
|
|
for it.scan() {
|
|
|
values = append(values, it.value())
|
|
|
}
|
|
|
if it.err() != nil {
|
|
|
t.Error(it.err())
|
|
|
}
|
|
|
}
|
|
|
|
|
|
for i, v := range values {
|
|
|
if samples[i].Timestamp != v.Timestamp {
|
|
|
t.Errorf("%d. Got %v; want %v", i, v.Timestamp, samples[i].Timestamp)
|
|
|
}
|
|
|
if samples[i].Value != v.Value {
|
|
|
t.Errorf("%d. Got %v; want %v", i, v.Value, samples[i].Value)
|
|
|
}
|
|
|
}
|
|
|
//s.fpLocker.Unlock(m.fp)
|
|
|
}
|
|
|
log.Info("test done, closing")
|
|
|
}
|
|
|
|
|
|
func TestChunkType0(t *testing.T) {
|
|
|
testChunk(t, 0)
|
|
|
}
|
|
|
|
|
|
func TestChunkType1(t *testing.T) {
|
|
|
testChunk(t, 1)
|
|
|
}
|
|
|
|
|
|
func TestChunkType2(t *testing.T) {
|
|
|
testChunk(t, 2)
|
|
|
}
|
|
|
|
|
|
func testValueAtOrBeforeTime(t *testing.T, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 10000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i) * 0.2),
|
|
|
}
|
|
|
}
|
|
|
s, closer := NewTestStorage(t, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fp := model.Metric{}.FastFingerprint()
|
|
|
|
|
|
_, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest)
|
|
|
|
|
|
// #1 Exactly on a sample.
|
|
|
for i, expected := range samples {
|
|
|
actual := it.ValueAtOrBeforeTime(expected.Timestamp)
|
|
|
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
t.Errorf("1.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
t.Errorf("1.%d. Got %v; want %v", i, actual.Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #2 Between samples.
|
|
|
for i, expected := range samples {
|
|
|
if i == len(samples)-1 {
|
|
|
continue
|
|
|
}
|
|
|
actual := it.ValueAtOrBeforeTime(expected.Timestamp + 1)
|
|
|
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
t.Errorf("2.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
t.Errorf("2.%d. Got %v; want %v", i, actual.Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #3 Corner cases: Just before the first sample, just after the last.
|
|
|
expected := &model.Sample{Timestamp: model.Earliest}
|
|
|
actual := it.ValueAtOrBeforeTime(samples[0].Timestamp - 1)
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
t.Errorf("3.1. Got %v; want %v", actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
t.Errorf("3.1. Got %v; want %v", actual.Value, expected.Value)
|
|
|
}
|
|
|
expected = samples[len(samples)-1]
|
|
|
actual = it.ValueAtOrBeforeTime(expected.Timestamp + 1)
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
t.Errorf("3.2. Got %v; want %v", actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
t.Errorf("3.2. Got %v; want %v", actual.Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestValueAtTimeChunkType0(t *testing.T) {
|
|
|
testValueAtOrBeforeTime(t, 0)
|
|
|
}
|
|
|
|
|
|
func TestValueAtTimeChunkType1(t *testing.T) {
|
|
|
testValueAtOrBeforeTime(t, 1)
|
|
|
}
|
|
|
|
|
|
func TestValueAtTimeChunkType2(t *testing.T) {
|
|
|
testValueAtOrBeforeTime(t, 2)
|
|
|
}
|
|
|
|
|
|
func benchmarkValueAtOrBeforeTime(b *testing.B, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 10000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i) * 0.2),
|
|
|
}
|
|
|
}
|
|
|
s, closer := NewTestStorage(b, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fp := model.Metric{}.FastFingerprint()
|
|
|
|
|
|
_, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest)
|
|
|
|
|
|
b.ResetTimer()
|
|
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
// #1 Exactly on a sample.
|
|
|
for i, expected := range samples {
|
|
|
actual := it.ValueAtOrBeforeTime(expected.Timestamp)
|
|
|
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
b.Errorf("1.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
b.Errorf("1.%d. Got %v; want %v", i, actual.Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #2 Between samples.
|
|
|
for i, expected := range samples {
|
|
|
if i == len(samples)-1 {
|
|
|
continue
|
|
|
}
|
|
|
actual := it.ValueAtOrBeforeTime(expected.Timestamp + 1)
|
|
|
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
b.Errorf("2.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
b.Errorf("2.%d. Got %v; want %v", i, actual.Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #3 Corner cases: Just before the first sample, just after the last.
|
|
|
expected := &model.Sample{Timestamp: model.Earliest}
|
|
|
actual := it.ValueAtOrBeforeTime(samples[0].Timestamp - 1)
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
b.Errorf("3.1. Got %v; want %v", actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
b.Errorf("3.1. Got %v; want %v", actual.Value, expected.Value)
|
|
|
}
|
|
|
expected = samples[len(samples)-1]
|
|
|
actual = it.ValueAtOrBeforeTime(expected.Timestamp + 1)
|
|
|
if expected.Timestamp != actual.Timestamp {
|
|
|
b.Errorf("3.2. Got %v; want %v", actual.Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual.Value {
|
|
|
b.Errorf("3.2. Got %v; want %v", actual.Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func BenchmarkValueAtOrBeforeTimeChunkType0(b *testing.B) {
|
|
|
benchmarkValueAtOrBeforeTime(b, 0)
|
|
|
}
|
|
|
|
|
|
func BenchmarkValueAtTimeChunkType1(b *testing.B) {
|
|
|
benchmarkValueAtOrBeforeTime(b, 1)
|
|
|
}
|
|
|
|
|
|
func BenchmarkValueAtTimeChunkType2(b *testing.B) {
|
|
|
benchmarkValueAtOrBeforeTime(b, 2)
|
|
|
}
|
|
|
|
|
|
func testRangeValues(t *testing.T, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 10000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i) * 0.2),
|
|
|
}
|
|
|
}
|
|
|
s, closer := NewTestStorage(t, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fp := model.Metric{}.FastFingerprint()
|
|
|
|
|
|
_, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest)
|
|
|
|
|
|
// #1 Zero length interval at sample.
|
|
|
for i, expected := range samples {
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: expected.Timestamp,
|
|
|
NewestInclusive: expected.Timestamp,
|
|
|
})
|
|
|
|
|
|
if len(actual) != 1 {
|
|
|
t.Fatalf("1.%d. Expected exactly one result, got %d.", i, len(actual))
|
|
|
}
|
|
|
if expected.Timestamp != actual[0].Timestamp {
|
|
|
t.Errorf("1.%d. Got %v; want %v.", i, actual[0].Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual[0].Value {
|
|
|
t.Errorf("1.%d. Got %v; want %v.", i, actual[0].Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #2 Zero length interval off sample.
|
|
|
for i, expected := range samples {
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: expected.Timestamp + 1,
|
|
|
NewestInclusive: expected.Timestamp + 1,
|
|
|
})
|
|
|
|
|
|
if len(actual) != 0 {
|
|
|
t.Fatalf("2.%d. Expected no result, got %d.", i, len(actual))
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #3 2sec interval around sample.
|
|
|
for i, expected := range samples {
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: expected.Timestamp - 1,
|
|
|
NewestInclusive: expected.Timestamp + 1,
|
|
|
})
|
|
|
|
|
|
if len(actual) != 1 {
|
|
|
t.Fatalf("3.%d. Expected exactly one result, got %d.", i, len(actual))
|
|
|
}
|
|
|
if expected.Timestamp != actual[0].Timestamp {
|
|
|
t.Errorf("3.%d. Got %v; want %v.", i, actual[0].Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual[0].Value {
|
|
|
t.Errorf("3.%d. Got %v; want %v.", i, actual[0].Value, expected.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #4 2sec interval sample to sample.
|
|
|
for i, expected1 := range samples {
|
|
|
if i == len(samples)-1 {
|
|
|
continue
|
|
|
}
|
|
|
expected2 := samples[i+1]
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: expected1.Timestamp,
|
|
|
NewestInclusive: expected1.Timestamp + 2,
|
|
|
})
|
|
|
|
|
|
if len(actual) != 2 {
|
|
|
t.Fatalf("4.%d. Expected exactly 2 results, got %d.", i, len(actual))
|
|
|
}
|
|
|
if expected1.Timestamp != actual[0].Timestamp {
|
|
|
t.Errorf("4.%d. Got %v for 1st result; want %v.", i, actual[0].Timestamp, expected1.Timestamp)
|
|
|
}
|
|
|
if expected1.Value != actual[0].Value {
|
|
|
t.Errorf("4.%d. Got %v for 1st result; want %v.", i, actual[0].Value, expected1.Value)
|
|
|
}
|
|
|
if expected2.Timestamp != actual[1].Timestamp {
|
|
|
t.Errorf("4.%d. Got %v for 2nd result; want %v.", i, actual[1].Timestamp, expected2.Timestamp)
|
|
|
}
|
|
|
if expected2.Value != actual[1].Value {
|
|
|
t.Errorf("4.%d. Got %v for 2nd result; want %v.", i, actual[1].Value, expected2.Value)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// #5 corner cases: Interval ends at first sample, interval starts
|
|
|
// at last sample, interval entirely before/after samples.
|
|
|
expected := samples[0]
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: expected.Timestamp - 2,
|
|
|
NewestInclusive: expected.Timestamp,
|
|
|
})
|
|
|
if len(actual) != 1 {
|
|
|
t.Fatalf("5.1. Expected exactly one result, got %d.", len(actual))
|
|
|
}
|
|
|
if expected.Timestamp != actual[0].Timestamp {
|
|
|
t.Errorf("5.1. Got %v; want %v.", actual[0].Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual[0].Value {
|
|
|
t.Errorf("5.1. Got %v; want %v.", actual[0].Value, expected.Value)
|
|
|
}
|
|
|
expected = samples[len(samples)-1]
|
|
|
actual = it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: expected.Timestamp,
|
|
|
NewestInclusive: expected.Timestamp + 2,
|
|
|
})
|
|
|
if len(actual) != 1 {
|
|
|
t.Fatalf("5.2. Expected exactly one result, got %d.", len(actual))
|
|
|
}
|
|
|
if expected.Timestamp != actual[0].Timestamp {
|
|
|
t.Errorf("5.2. Got %v; want %v.", actual[0].Timestamp, expected.Timestamp)
|
|
|
}
|
|
|
if expected.Value != actual[0].Value {
|
|
|
t.Errorf("5.2. Got %v; want %v.", actual[0].Value, expected.Value)
|
|
|
}
|
|
|
firstSample := samples[0]
|
|
|
actual = it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: firstSample.Timestamp - 4,
|
|
|
NewestInclusive: firstSample.Timestamp - 2,
|
|
|
})
|
|
|
if len(actual) != 0 {
|
|
|
t.Fatalf("5.3. Expected no results, got %d.", len(actual))
|
|
|
}
|
|
|
lastSample := samples[len(samples)-1]
|
|
|
actual = it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: lastSample.Timestamp + 2,
|
|
|
NewestInclusive: lastSample.Timestamp + 4,
|
|
|
})
|
|
|
if len(actual) != 0 {
|
|
|
t.Fatalf("5.3. Expected no results, got %d.", len(actual))
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestRangeValuesChunkType0(t *testing.T) {
|
|
|
testRangeValues(t, 0)
|
|
|
}
|
|
|
|
|
|
func TestRangeValuesChunkType1(t *testing.T) {
|
|
|
testRangeValues(t, 1)
|
|
|
}
|
|
|
|
|
|
func TestRangeValuesChunkType2(t *testing.T) {
|
|
|
testRangeValues(t, 2)
|
|
|
}
|
|
|
|
|
|
func benchmarkRangeValues(b *testing.B, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 10000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i) * 0.2),
|
|
|
}
|
|
|
}
|
|
|
s, closer := NewTestStorage(b, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fp := model.Metric{}.FastFingerprint()
|
|
|
|
|
|
_, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest)
|
|
|
|
|
|
b.ResetTimer()
|
|
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
for _, sample := range samples {
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: sample.Timestamp - 20,
|
|
|
NewestInclusive: sample.Timestamp + 20,
|
|
|
})
|
|
|
|
|
|
if len(actual) < 10 {
|
|
|
b.Fatalf("not enough samples found")
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func BenchmarkRangeValuesChunkType0(b *testing.B) {
|
|
|
benchmarkRangeValues(b, 0)
|
|
|
}
|
|
|
|
|
|
func BenchmarkRangeValuesChunkType1(b *testing.B) {
|
|
|
benchmarkRangeValues(b, 1)
|
|
|
}
|
|
|
|
|
|
func BenchmarkRangeValuesChunkType2(b *testing.B) {
|
|
|
benchmarkRangeValues(b, 2)
|
|
|
}
|
|
|
|
|
|
func testEvictAndPurgeSeries(t *testing.T, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 10000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i * i)),
|
|
|
}
|
|
|
}
|
|
|
s, closer := NewTestStorage(t, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fp := model.Metric{}.FastFingerprint()
|
|
|
|
|
|
// Drop ~half of the chunks.
|
|
|
s.maintainMemorySeries(fp, 10000)
|
|
|
_, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest)
|
|
|
actual := it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: 0,
|
|
|
NewestInclusive: 100000,
|
|
|
})
|
|
|
if len(actual) < 4000 {
|
|
|
t.Fatalf("expected more than %d results after purging half of series, got %d", 4000, len(actual))
|
|
|
}
|
|
|
if actual[0].Timestamp < 6000 || actual[0].Timestamp > 10000 {
|
|
|
t.Errorf("1st timestamp out of expected range: %v", actual[0].Timestamp)
|
|
|
}
|
|
|
want := model.Time(19998)
|
|
|
if actual[len(actual)-1].Timestamp != want {
|
|
|
t.Errorf("2nd timestamp: want %v, got %v", want, actual[1].Timestamp)
|
|
|
}
|
|
|
|
|
|
// Drop everything.
|
|
|
s.maintainMemorySeries(fp, 100000)
|
|
|
_, it = s.preloadChunksForRange(fp, model.Earliest, model.Latest)
|
|
|
actual = it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: 0,
|
|
|
NewestInclusive: 100000,
|
|
|
})
|
|
|
if len(actual) != 0 {
|
|
|
t.Fatal("expected zero results after purging the whole series")
|
|
|
}
|
|
|
|
|
|
// Recreate series.
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
series, ok := s.fpToSeries.get(fp)
|
|
|
if !ok {
|
|
|
t.Fatal("could not find series")
|
|
|
}
|
|
|
|
|
|
// Persist head chunk so we can safely archive.
|
|
|
series.headChunkClosed = true
|
|
|
s.maintainMemorySeries(fp, model.Earliest)
|
|
|
|
|
|
// Archive metrics.
|
|
|
s.fpToSeries.del(fp)
|
|
|
lastTime, err := series.head().lastTime()
|
|
|
if err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
s.persistence.archiveMetric(fp, series.metric, series.firstTime(), lastTime)
|
|
|
archived, _, _ := s.persistence.hasArchivedMetric(fp)
|
|
|
if !archived {
|
|
|
t.Fatal("not archived")
|
|
|
}
|
|
|
|
|
|
// Drop ~half of the chunks of an archived series.
|
|
|
s.maintainArchivedSeries(fp, 10000)
|
|
|
archived, _, _ = s.persistence.hasArchivedMetric(fp)
|
|
|
if !archived {
|
|
|
t.Fatal("archived series purged although only half of the chunks dropped")
|
|
|
}
|
|
|
|
|
|
// Drop everything.
|
|
|
s.maintainArchivedSeries(fp, 100000)
|
|
|
archived, _, _ = s.persistence.hasArchivedMetric(fp)
|
|
|
if archived {
|
|
|
t.Fatal("archived series not dropped")
|
|
|
}
|
|
|
|
|
|
// Recreate series.
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
series, ok = s.fpToSeries.get(fp)
|
|
|
if !ok {
|
|
|
t.Fatal("could not find series")
|
|
|
}
|
|
|
|
|
|
// Persist head chunk so we can safely archive.
|
|
|
series.headChunkClosed = true
|
|
|
s.maintainMemorySeries(fp, model.Earliest)
|
|
|
|
|
|
// Archive metrics.
|
|
|
s.fpToSeries.del(fp)
|
|
|
lastTime, err = series.head().lastTime()
|
|
|
if err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
s.persistence.archiveMetric(fp, series.metric, series.firstTime(), lastTime)
|
|
|
archived, _, _ = s.persistence.hasArchivedMetric(fp)
|
|
|
if !archived {
|
|
|
t.Fatal("not archived")
|
|
|
}
|
|
|
|
|
|
// Unarchive metrics.
|
|
|
s.getOrCreateSeries(fp, model.Metric{})
|
|
|
|
|
|
series, ok = s.fpToSeries.get(fp)
|
|
|
if !ok {
|
|
|
t.Fatal("could not find series")
|
|
|
}
|
|
|
archived, _, _ = s.persistence.hasArchivedMetric(fp)
|
|
|
if archived {
|
|
|
t.Fatal("archived")
|
|
|
}
|
|
|
|
|
|
// Set archiveHighWatermark to a low value so that we can see it increase.
|
|
|
s.archiveHighWatermark = 42
|
|
|
|
|
|
// This will archive again, but must not drop it completely, despite the
|
|
|
// memorySeries being empty.
|
|
|
s.maintainMemorySeries(fp, 10000)
|
|
|
archived, _, _ = s.persistence.hasArchivedMetric(fp)
|
|
|
if !archived {
|
|
|
t.Fatal("series purged completely")
|
|
|
}
|
|
|
// archiveHighWatermark must have been set by maintainMemorySeries.
|
|
|
if want, got := model.Time(19998), s.archiveHighWatermark; want != got {
|
|
|
t.Errorf("want archiveHighWatermark %v, got %v", want, got)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestEvictAndPurgeSeriesChunkType0(t *testing.T) {
|
|
|
testEvictAndPurgeSeries(t, 0)
|
|
|
}
|
|
|
|
|
|
func TestEvictAndPurgeSeriesChunkType1(t *testing.T) {
|
|
|
testEvictAndPurgeSeries(t, 1)
|
|
|
}
|
|
|
|
|
|
func TestEvictAndPurgeSeriesChunkType2(t *testing.T) {
|
|
|
testEvictAndPurgeSeries(t, 2)
|
|
|
}
|
|
|
|
|
|
func testEvictAndLoadChunkDescs(t *testing.T, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, 10000)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Timestamp: model.Time(2 * i),
|
|
|
Value: model.SampleValue(float64(i * i)),
|
|
|
}
|
|
|
}
|
|
|
// Give last sample a timestamp of now so that the head chunk will not
|
|
|
// be closed (which would then archive the time series later as
|
|
|
// everything will get evicted).
|
|
|
samples[len(samples)-1] = &model.Sample{
|
|
|
Timestamp: model.Now(),
|
|
|
Value: model.SampleValue(3.14),
|
|
|
}
|
|
|
|
|
|
s, closer := NewTestStorage(t, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
// Adjust memory chunks to lower value to see evictions.
|
|
|
s.maxMemoryChunks = 1
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
s.WaitForIndexing()
|
|
|
|
|
|
fp := model.Metric{}.FastFingerprint()
|
|
|
|
|
|
series, ok := s.fpToSeries.get(fp)
|
|
|
if !ok {
|
|
|
t.Fatal("could not find series")
|
|
|
}
|
|
|
|
|
|
oldLen := len(series.chunkDescs)
|
|
|
// Maintain series without any dropped chunks.
|
|
|
s.maintainMemorySeries(fp, 0)
|
|
|
// Give the evict goroutine an opportunity to run.
|
|
|
time.Sleep(250 * time.Millisecond)
|
|
|
// Maintain series again to trigger chunkDesc eviction
|
|
|
s.maintainMemorySeries(fp, 0)
|
|
|
|
|
|
if oldLen <= len(series.chunkDescs) {
|
|
|
t.Errorf("Expected number of chunkDescs to decrease, old number %d, current number %d.", oldLen, len(series.chunkDescs))
|
|
|
}
|
|
|
|
|
|
// Load everything back.
|
|
|
p := s.NewPreloader()
|
|
|
p.PreloadRange(fp, 0, 100000)
|
|
|
|
|
|
if oldLen != len(series.chunkDescs) {
|
|
|
t.Errorf("Expected number of chunkDescs to have reached old value again, old number %d, current number %d.", oldLen, len(series.chunkDescs))
|
|
|
}
|
|
|
|
|
|
p.Close()
|
|
|
|
|
|
// Now maintain series with drops to make sure nothing crazy happens.
|
|
|
s.maintainMemorySeries(fp, 100000)
|
|
|
|
|
|
if len(series.chunkDescs) != 1 {
|
|
|
t.Errorf("Expected exactly one chunkDesc left, got %d.", len(series.chunkDescs))
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestEvictAndLoadChunkDescsType0(t *testing.T) {
|
|
|
testEvictAndLoadChunkDescs(t, 0)
|
|
|
}
|
|
|
|
|
|
func TestEvictAndLoadChunkDescsType1(t *testing.T) {
|
|
|
testEvictAndLoadChunkDescs(t, 1)
|
|
|
}
|
|
|
|
|
|
func benchmarkAppend(b *testing.B, encoding chunkEncoding) {
|
|
|
samples := make(model.Samples, b.N)
|
|
|
for i := range samples {
|
|
|
samples[i] = &model.Sample{
|
|
|
Metric: model.Metric{
|
|
|
model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)),
|
|
|
"label1": model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)),
|
|
|
"label2": model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)),
|
|
|
},
|
|
|
Timestamp: model.Time(i),
|
|
|
Value: model.SampleValue(i),
|
|
|
}
|
|
|
}
|
|
|
b.ResetTimer()
|
|
|
s, closer := NewTestStorage(b, encoding)
|
|
|
defer closer.Close()
|
|
|
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func BenchmarkAppendType0(b *testing.B) {
|
|
|
benchmarkAppend(b, 0)
|
|
|
}
|
|
|
|
|
|
func BenchmarkAppendType1(b *testing.B) {
|
|
|
benchmarkAppend(b, 1)
|
|
|
}
|
|
|
|
|
|
func BenchmarkAppendType2(b *testing.B) {
|
|
|
benchmarkAppend(b, 2)
|
|
|
}
|
|
|
|
|
|
// Append a large number of random samples and then check if we can get them out
|
|
|
// of the storage alright.
|
|
|
func testFuzz(t *testing.T, encoding chunkEncoding) {
|
|
|
if testing.Short() {
|
|
|
t.Skip("Skipping test in short mode.")
|
|
|
}
|
|
|
|
|
|
check := func(seed int64) bool {
|
|
|
rand.Seed(seed)
|
|
|
s, c := NewTestStorage(t, encoding)
|
|
|
defer c.Close()
|
|
|
|
|
|
samples := createRandomSamples("test_fuzz", 10000)
|
|
|
for _, sample := range samples {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
if !verifyStorageRandom(t, s, samples) {
|
|
|
return false
|
|
|
}
|
|
|
return verifyStorageSequential(t, s, samples)
|
|
|
}
|
|
|
|
|
|
if err := quick.Check(check, nil); err != nil {
|
|
|
t.Fatal(err)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func TestFuzzChunkType0(t *testing.T) {
|
|
|
testFuzz(t, 0)
|
|
|
}
|
|
|
|
|
|
func TestFuzzChunkType1(t *testing.T) {
|
|
|
testFuzz(t, 1)
|
|
|
}
|
|
|
|
|
|
func TestFuzzChunkType2(t *testing.T) {
|
|
|
testFuzz(t, 2)
|
|
|
}
|
|
|
|
|
|
// benchmarkFuzz is the benchmark version of testFuzz. The storage options are
|
|
|
// set such that evictions, checkpoints, and purging will happen concurrently,
|
|
|
// too. This benchmark will have a very long runtime (up to minutes). You can
|
|
|
// use it as an actual benchmark. Run it like this:
|
|
|
//
|
|
|
// go test -cpu 1,2,4,8 -run=NONE -bench BenchmarkFuzzChunkType -benchmem
|
|
|
//
|
|
|
// You can also use it as a test for races. In that case, run it like this (will
|
|
|
// make things even slower):
|
|
|
//
|
|
|
// go test -race -cpu 8 -short -bench BenchmarkFuzzChunkType
|
|
|
func benchmarkFuzz(b *testing.B, encoding chunkEncoding) {
|
|
|
DefaultChunkEncoding = encoding
|
|
|
const samplesPerRun = 100000
|
|
|
rand.Seed(42)
|
|
|
directory := testutil.NewTemporaryDirectory("test_storage", b)
|
|
|
defer directory.Close()
|
|
|
o := &MemorySeriesStorageOptions{
|
|
|
MemoryChunks: 100,
|
|
|
MaxChunksToPersist: 1000000,
|
|
|
PersistenceRetentionPeriod: time.Hour,
|
|
|
PersistenceStoragePath: directory.Path(),
|
|
|
CheckpointInterval: time.Second,
|
|
|
SyncStrategy: Adaptive,
|
|
|
MinShrinkRatio: 0.1,
|
|
|
}
|
|
|
s := NewMemorySeriesStorage(o)
|
|
|
if err := s.Start(); err != nil {
|
|
|
b.Fatalf("Error starting storage: %s", err)
|
|
|
}
|
|
|
s.Start()
|
|
|
defer s.Stop()
|
|
|
|
|
|
samples := createRandomSamples("benchmark_fuzz", samplesPerRun*b.N)
|
|
|
|
|
|
b.ResetTimer()
|
|
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
start := samplesPerRun * i
|
|
|
end := samplesPerRun * (i + 1)
|
|
|
middle := (start + end) / 2
|
|
|
for _, sample := range samples[start:middle] {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
verifyStorageRandom(b, s.(*memorySeriesStorage), samples[:middle])
|
|
|
for _, sample := range samples[middle:end] {
|
|
|
s.Append(sample)
|
|
|
}
|
|
|
verifyStorageRandom(b, s.(*memorySeriesStorage), samples[:end])
|
|
|
verifyStorageSequential(b, s.(*memorySeriesStorage), samples)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func BenchmarkFuzzChunkType0(b *testing.B) {
|
|
|
benchmarkFuzz(b, 0)
|
|
|
}
|
|
|
|
|
|
func BenchmarkFuzzChunkType1(b *testing.B) {
|
|
|
benchmarkFuzz(b, 1)
|
|
|
}
|
|
|
|
|
|
func BenchmarkFuzzChunkType2(b *testing.B) {
|
|
|
benchmarkFuzz(b, 2)
|
|
|
}
|
|
|
|
|
|
func createRandomSamples(metricName string, minLen int) model.Samples {
|
|
|
type valueCreator func() model.SampleValue
|
|
|
type deltaApplier func(model.SampleValue) model.SampleValue
|
|
|
|
|
|
var (
|
|
|
maxMetrics = 5
|
|
|
maxStreakLength = 2000
|
|
|
maxTimeDelta = 10000
|
|
|
timestamp = model.Now() - model.Time(maxTimeDelta*minLen) // So that some timestamps are in the future.
|
|
|
generators = []struct {
|
|
|
createValue valueCreator
|
|
|
applyDelta []deltaApplier
|
|
|
}{
|
|
|
{ // "Boolean".
|
|
|
createValue: func() model.SampleValue {
|
|
|
return model.SampleValue(rand.Intn(2))
|
|
|
},
|
|
|
applyDelta: []deltaApplier{
|
|
|
func(_ model.SampleValue) model.SampleValue {
|
|
|
return model.SampleValue(rand.Intn(2))
|
|
|
},
|
|
|
},
|
|
|
},
|
|
|
{ // Integer with int deltas of various byte length.
|
|
|
createValue: func() model.SampleValue {
|
|
|
return model.SampleValue(rand.Int63() - 1<<62)
|
|
|
},
|
|
|
applyDelta: []deltaApplier{
|
|
|
func(v model.SampleValue) model.SampleValue {
|
|
|
return model.SampleValue(rand.Intn(1<<8) - 1<<7 + int(v))
|
|
|
},
|
|
|
func(v model.SampleValue) model.SampleValue {
|
|
|
return model.SampleValue(rand.Intn(1<<16) - 1<<15 + int(v))
|
|
|
},
|
|
|
func(v model.SampleValue) model.SampleValue {
|
|
|
return model.SampleValue(rand.Int63n(1<<32) - 1<<31 + int64(v))
|
|
|
},
|
|
|
},
|
|
|
},
|
|
|
{ // Float with float32 and float64 deltas.
|
|
|
createValue: func() model.SampleValue {
|
|
|
return model.SampleValue(rand.NormFloat64())
|
|
|
},
|
|
|
applyDelta: []deltaApplier{
|
|
|
func(v model.SampleValue) model.SampleValue {
|
|
|
return v + model.SampleValue(float32(rand.NormFloat64()))
|
|
|
},
|
|
|
func(v model.SampleValue) model.SampleValue {
|
|
|
return v + model.SampleValue(rand.NormFloat64())
|
|
|
},
|
|
|
},
|
|
|
},
|
|
|
}
|
|
|
timestampIncrementers = []func(baseDelta model.Time) model.Time{
|
|
|
// Regular increments.
|
|
|
func(delta model.Time) model.Time {
|
|
|
return delta
|
|
|
},
|
|
|
// Jittered increments. σ is 1/100 of delta, e.g. 10ms for 10s scrape interval.
|
|
|
func(delta model.Time) model.Time {
|
|
|
return delta + model.Time(rand.NormFloat64()*float64(delta)/100)
|
|
|
},
|
|
|
// Regular increments, but missing a scrape with 10% chance.
|
|
|
func(delta model.Time) model.Time {
|
|
|
i := rand.Intn(100)
|
|
|
if i < 90 {
|
|
|
return delta
|
|
|
}
|
|
|
if i < 99 {
|
|
|
return 2 * delta
|
|
|
}
|
|
|
return 3 * delta
|
|
|
// Ignoring the case with more than two missed scrapes in a row.
|
|
|
},
|
|
|
}
|
|
|
)
|
|
|
|
|
|
// Prefill result with two samples with colliding metrics (to test fingerprint mapping).
|
|
|
result := model.Samples{
|
|
|
&model.Sample{
|
|
|
Metric: model.Metric{
|
|
|
"instance": "ip-10-33-84-73.l05.ams5.s-cloud.net:24483",
|
|
|
"status": "503",
|
|
|
},
|
|
|
Value: 42,
|
|
|
Timestamp: timestamp,
|
|
|
},
|
|
|
&model.Sample{
|
|
|
Metric: model.Metric{
|
|
|
"instance": "ip-10-33-84-73.l05.ams5.s-cloud.net:24480",
|
|
|
"status": "500",
|
|
|
},
|
|
|
Value: 2010,
|
|
|
Timestamp: timestamp + 1,
|
|
|
},
|
|
|
}
|
|
|
|
|
|
metrics := []model.Metric{}
|
|
|
for n := rand.Intn(maxMetrics); n >= 0; n-- {
|
|
|
metrics = append(metrics, model.Metric{
|
|
|
model.MetricNameLabel: model.LabelValue(metricName),
|
|
|
model.LabelName(fmt.Sprintf("labelname_%d", n+1)): model.LabelValue(fmt.Sprintf("labelvalue_%d", rand.Int())),
|
|
|
})
|
|
|
}
|
|
|
|
|
|
for len(result) < minLen {
|
|
|
var (
|
|
|
// Pick a metric for this cycle.
|
|
|
metric = metrics[rand.Intn(len(metrics))]
|
|
|
timeDelta = model.Time(rand.Intn(maxTimeDelta) + 1)
|
|
|
generator = generators[rand.Intn(len(generators))]
|
|
|
createValue = generator.createValue
|
|
|
applyDelta = generator.applyDelta[rand.Intn(len(generator.applyDelta))]
|
|
|
incTimestamp = timestampIncrementers[rand.Intn(len(timestampIncrementers))]
|
|
|
)
|
|
|
|
|
|
switch rand.Intn(4) {
|
|
|
case 0: // A single sample.
|
|
|
result = append(result, &model.Sample{
|
|
|
Metric: metric,
|
|
|
Value: createValue(),
|
|
|
Timestamp: timestamp,
|
|
|
})
|
|
|
timestamp += incTimestamp(timeDelta)
|
|
|
case 1: // A streak of random sample values.
|
|
|
for n := rand.Intn(maxStreakLength); n >= 0; n-- {
|
|
|
result = append(result, &model.Sample{
|
|
|
Metric: metric,
|
|
|
Value: createValue(),
|
|
|
Timestamp: timestamp,
|
|
|
})
|
|
|
timestamp += incTimestamp(timeDelta)
|
|
|
}
|
|
|
case 2: // A streak of sample values with incremental changes.
|
|
|
value := createValue()
|
|
|
for n := rand.Intn(maxStreakLength); n >= 0; n-- {
|
|
|
result = append(result, &model.Sample{
|
|
|
Metric: metric,
|
|
|
Value: value,
|
|
|
Timestamp: timestamp,
|
|
|
})
|
|
|
timestamp += incTimestamp(timeDelta)
|
|
|
value = applyDelta(value)
|
|
|
}
|
|
|
case 3: // A streak of constant sample values.
|
|
|
value := createValue()
|
|
|
for n := rand.Intn(maxStreakLength); n >= 0; n-- {
|
|
|
result = append(result, &model.Sample{
|
|
|
Metric: metric,
|
|
|
Value: value,
|
|
|
Timestamp: timestamp,
|
|
|
})
|
|
|
timestamp += incTimestamp(timeDelta)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
return result
|
|
|
}
|
|
|
|
|
|
func verifyStorageRandom(t testing.TB, s *memorySeriesStorage, samples model.Samples) bool {
|
|
|
s.WaitForIndexing()
|
|
|
result := true
|
|
|
for _, i := range rand.Perm(len(samples)) {
|
|
|
sample := samples[i]
|
|
|
fp := s.mapper.mapFP(sample.Metric.FastFingerprint(), sample.Metric)
|
|
|
p := s.NewPreloader()
|
|
|
it := p.PreloadInstant(fp, sample.Timestamp, 0)
|
|
|
found := it.ValueAtOrBeforeTime(sample.Timestamp)
|
|
|
startTime := it.(*boundedIterator).start
|
|
|
switch {
|
|
|
case found.Timestamp != model.Earliest && sample.Timestamp.Before(startTime):
|
|
|
t.Errorf("Sample #%d %#v: Expected outdated sample to be excluded.", i, sample)
|
|
|
result = false
|
|
|
case found.Timestamp == model.Earliest && !sample.Timestamp.Before(startTime):
|
|
|
t.Errorf("Sample #%d %#v: Expected sample not found.", i, sample)
|
|
|
result = false
|
|
|
case found.Timestamp == model.Earliest && sample.Timestamp.Before(startTime):
|
|
|
// All good. Outdated sample dropped.
|
|
|
case sample.Value != found.Value || sample.Timestamp != found.Timestamp:
|
|
|
t.Errorf(
|
|
|
"Sample #%d %#v: Value (or timestamp) mismatch, want %f (at time %v), got %f (at time %v).",
|
|
|
i, sample, sample.Value, sample.Timestamp, found.Value, found.Timestamp,
|
|
|
)
|
|
|
result = false
|
|
|
}
|
|
|
p.Close()
|
|
|
}
|
|
|
return result
|
|
|
}
|
|
|
|
|
|
func verifyStorageSequential(t testing.TB, s *memorySeriesStorage, samples model.Samples) bool {
|
|
|
s.WaitForIndexing()
|
|
|
var (
|
|
|
result = true
|
|
|
fp model.Fingerprint
|
|
|
p = s.NewPreloader()
|
|
|
it SeriesIterator
|
|
|
r []model.SamplePair
|
|
|
j int
|
|
|
)
|
|
|
defer func() {
|
|
|
p.Close()
|
|
|
}()
|
|
|
for i, sample := range samples {
|
|
|
newFP := s.mapper.mapFP(sample.Metric.FastFingerprint(), sample.Metric)
|
|
|
if it == nil || newFP != fp {
|
|
|
fp = newFP
|
|
|
p.Close()
|
|
|
p = s.NewPreloader()
|
|
|
it = p.PreloadRange(fp, sample.Timestamp, model.Latest)
|
|
|
r = it.RangeValues(metric.Interval{
|
|
|
OldestInclusive: sample.Timestamp,
|
|
|
NewestInclusive: model.Latest,
|
|
|
})
|
|
|
j = -1
|
|
|
}
|
|
|
startTime := it.(*boundedIterator).start
|
|
|
if sample.Timestamp.Before(startTime) {
|
|
|
continue
|
|
|
}
|
|
|
j++
|
|
|
if j >= len(r) {
|
|
|
t.Errorf(
|
|
|
"Sample #%d %v not found.",
|
|
|
i, sample,
|
|
|
)
|
|
|
result = false
|
|
|
continue
|
|
|
}
|
|
|
found := r[j]
|
|
|
if sample.Value != found.Value || sample.Timestamp != found.Timestamp {
|
|
|
t.Errorf(
|
|
|
"Sample #%d %v: Value (or timestamp) mismatch, want %f (at time %v), got %f (at time %v).",
|
|
|
i, sample, sample.Value, sample.Timestamp, found.Value, found.Timestamp,
|
|
|
)
|
|
|
result = false
|
|
|
}
|
|
|
}
|
|
|
return result
|
|
|
}
|
|
|
|
|
|
func TestAppendOutOfOrder(t *testing.T) {
|
|
|
s, closer := NewTestStorage(t, 2)
|
|
|
defer closer.Close()
|
|
|
|
|
|
m := model.Metric{
|
|
|
model.MetricNameLabel: "out_of_order",
|
|
|
}
|
|
|
|
|
|
tests := []struct {
|
|
|
name string
|
|
|
timestamp model.Time
|
|
|
value model.SampleValue
|
|
|
wantErr error
|
|
|
}{
|
|
|
{
|
|
|
name: "1st sample",
|
|
|
timestamp: 0,
|
|
|
value: 0,
|
|
|
wantErr: nil,
|
|
|
},
|
|
|
{
|
|
|
name: "regular append",
|
|
|
timestamp: 2,
|
|
|
value: 1,
|
|
|
wantErr: nil,
|
|
|
},
|
|
|
{
|
|
|
name: "same timestamp, same value (no-op)",
|
|
|
timestamp: 2,
|
|
|
value: 1,
|
|
|
wantErr: nil,
|
|
|
},
|
|
|
{
|
|
|
name: "same timestamp, different value",
|
|
|
timestamp: 2,
|
|
|
value: 2,
|
|
|
wantErr: ErrDuplicateSampleForTimestamp,
|
|
|
},
|
|
|
{
|
|
|
name: "earlier timestamp, same value",
|
|
|
timestamp: 1,
|
|
|
value: 2,
|
|
|
wantErr: ErrOutOfOrderSample,
|
|
|
},
|
|
|
{
|
|
|
name: "earlier timestamp, different value",
|
|
|
timestamp: 1,
|
|
|
value: 3,
|
|
|
wantErr: ErrOutOfOrderSample,
|
|
|
},
|
|
|
{
|
|
|
name: "regular append of NaN",
|
|
|
timestamp: 3,
|
|
|
value: model.SampleValue(math.NaN()),
|
|
|
wantErr: nil,
|
|
|
},
|
|
|
{
|
|
|
name: "no-op append of NaN",
|
|
|
timestamp: 3,
|
|
|
value: model.SampleValue(math.NaN()),
|
|
|
wantErr: nil,
|
|
|
},
|
|
|
{
|
|
|
name: "append of NaN with earlier timestamp",
|
|
|
timestamp: 2,
|
|
|
value: model.SampleValue(math.NaN()),
|
|
|
wantErr: ErrOutOfOrderSample,
|
|
|
},
|
|
|
{
|
|
|
name: "append of normal sample after NaN with same timestamp",
|
|
|
timestamp: 3,
|
|
|
value: 3.14,
|
|
|
wantErr: ErrDuplicateSampleForTimestamp,
|
|
|
},
|
|
|
}
|
|
|
|
|
|
for _, test := range tests {
|
|
|
gotErr := s.Append(&model.Sample{
|
|
|
Metric: m,
|
|
|
Timestamp: test.timestamp,
|
|
|
Value: test.value,
|
|
|
})
|
|
|
if gotErr != test.wantErr {
|
|
|
t.Errorf("%s: got %q, want %q", test.name, gotErr, test.wantErr)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
fp := s.mapper.mapFP(m.FastFingerprint(), m)
|
|
|
|
|
|
pl := s.NewPreloader()
|
|
|
defer pl.Close()
|
|
|
|
|
|
it := pl.PreloadRange(fp, 0, 2)
|
|
|
|
|
|
want := []model.SamplePair{
|
|
|
{
|
|
|
Timestamp: 0,
|
|
|
Value: 0,
|
|
|
},
|
|
|
{
|
|
|
Timestamp: 2,
|
|
|
Value: 1,
|
|
|
},
|
|
|
{
|
|
|
Timestamp: 3,
|
|
|
Value: model.SampleValue(math.NaN()),
|
|
|
},
|
|
|
}
|
|
|
got := it.RangeValues(metric.Interval{OldestInclusive: 0, NewestInclusive: 3})
|
|
|
// Note that we cannot just reflect.DeepEqual(want, got) because it has
|
|
|
// the semantics of NaN != NaN.
|
|
|
for i, gotSamplePair := range got {
|
|
|
wantSamplePair := want[i]
|
|
|
if !wantSamplePair.Equal(&gotSamplePair) {
|
|
|
t.Fatalf("want %v, got %v", wantSamplePair, gotSamplePair)
|
|
|
}
|
|
|
}
|
|
|
}
|