mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1172 lines
32 KiB
1172 lines
32 KiB
// Copyright 2013 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package promql |
|
|
|
import ( |
|
"flag" |
|
"fmt" |
|
"math" |
|
"runtime" |
|
"sort" |
|
"time" |
|
|
|
"golang.org/x/net/context" |
|
|
|
clientmodel "github.com/prometheus/client_golang/model" |
|
|
|
"github.com/prometheus/prometheus/stats" |
|
"github.com/prometheus/prometheus/storage/local" |
|
"github.com/prometheus/prometheus/storage/metric" |
|
) |
|
|
|
var ( |
|
stalenessDelta = flag.Duration("query.staleness-delta", 300*time.Second, "Staleness delta allowance during expression evaluations.") |
|
defaultQueryTimeout = flag.Duration("query.timeout", 2*time.Minute, "Maximum time a query may take before being aborted.") |
|
maxConcurrentQueries = flag.Int("query.max-concurrency", 20, "Maximum number of queries executed concurrently.") |
|
) |
|
|
|
// SampleStream is a stream of Values belonging to an attached COWMetric. |
|
type SampleStream struct { |
|
Metric clientmodel.COWMetric `json:"metric"` |
|
Values metric.Values `json:"values"` |
|
} |
|
|
|
// Sample is a single sample belonging to a COWMetric. |
|
type Sample struct { |
|
Metric clientmodel.COWMetric `json:"metric"` |
|
Value clientmodel.SampleValue `json:"value"` |
|
Timestamp clientmodel.Timestamp `json:"timestamp"` |
|
} |
|
|
|
// Scalar is a scalar value evaluated at the set timestamp. |
|
type Scalar struct { |
|
Value clientmodel.SampleValue |
|
Timestamp clientmodel.Timestamp |
|
} |
|
|
|
func (s *Scalar) String() string { |
|
return fmt.Sprintf("scalar: %v @[%v]", s.Value, s.Timestamp) |
|
} |
|
|
|
// String is a string value evaluated at the set timestamp. |
|
type String struct { |
|
Value string |
|
Timestamp clientmodel.Timestamp |
|
} |
|
|
|
func (s *String) String() string { |
|
return s.Value |
|
} |
|
|
|
// Vector is basically only an alias for clientmodel.Samples, but the |
|
// contract is that in a Vector, all Samples have the same timestamp. |
|
type Vector []*Sample |
|
|
|
// Matrix is a slice of SampleStreams that implements sort.Interface and |
|
// has a String method. |
|
type Matrix []*SampleStream |
|
|
|
// Len implements sort.Interface. |
|
func (matrix Matrix) Len() int { |
|
return len(matrix) |
|
} |
|
|
|
// Less implements sort.Interface. |
|
func (matrix Matrix) Less(i, j int) bool { |
|
return matrix[i].Metric.String() < matrix[j].Metric.String() |
|
} |
|
|
|
// Swap implements sort.Interface. |
|
func (matrix Matrix) Swap(i, j int) { |
|
matrix[i], matrix[j] = matrix[j], matrix[i] |
|
} |
|
|
|
// Value is a generic interface for values resulting from a query evaluation. |
|
type Value interface { |
|
Type() ExprType |
|
String() string |
|
} |
|
|
|
func (Matrix) Type() ExprType { return ExprMatrix } |
|
func (Vector) Type() ExprType { return ExprVector } |
|
func (*Scalar) Type() ExprType { return ExprScalar } |
|
func (*String) Type() ExprType { return ExprString } |
|
|
|
// Result holds the resulting value of an execution or an error |
|
// if any occurred. |
|
type Result struct { |
|
Err error |
|
Value Value |
|
} |
|
|
|
// Vector returns a vector if the result value is one. An error is returned if |
|
// the result was an error or the result value is not a vector. |
|
func (r *Result) Vector() (Vector, error) { |
|
if r.Err != nil { |
|
return nil, r.Err |
|
} |
|
v, ok := r.Value.(Vector) |
|
if !ok { |
|
return nil, fmt.Errorf("query result is not a vector") |
|
} |
|
return v, nil |
|
} |
|
|
|
// Matrix returns a matrix. An error is returned if |
|
// the result was an error or the result value is not a matrix. |
|
func (r *Result) Matrix() (Matrix, error) { |
|
if r.Err != nil { |
|
return nil, r.Err |
|
} |
|
v, ok := r.Value.(Matrix) |
|
if !ok { |
|
return nil, fmt.Errorf("query result is not a matrix") |
|
} |
|
return v, nil |
|
} |
|
|
|
// Scalar returns a scalar value. An error is returned if |
|
// the result was an error or the result value is not a scalar. |
|
func (r *Result) Scalar() (*Scalar, error) { |
|
if r.Err != nil { |
|
return nil, r.Err |
|
} |
|
v, ok := r.Value.(*Scalar) |
|
if !ok { |
|
return nil, fmt.Errorf("query result is not a scalar") |
|
} |
|
return v, nil |
|
} |
|
|
|
func (r *Result) String() string { |
|
if r.Err != nil { |
|
return r.Err.Error() |
|
} |
|
if r.Value == nil { |
|
return "" |
|
} |
|
return r.Value.String() |
|
} |
|
|
|
type ( |
|
// ErrQueryTimeout is returned if a query timed out during processing. |
|
ErrQueryTimeout string |
|
// ErrQueryCanceled is returned if a query was canceled during processing. |
|
ErrQueryCanceled string |
|
) |
|
|
|
func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) } |
|
func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) } |
|
|
|
// A Query is derived from an a raw query string and can be run against an engine |
|
// it is associated with. |
|
type Query interface { |
|
// Exec processes the query and |
|
Exec() *Result |
|
// Statements returns the parsed statements of the query. |
|
Statements() Statements |
|
// Stats returns statistics about the lifetime of the query. |
|
Stats() *stats.TimerGroup |
|
// Cancel signals that a running query execution should be aborted. |
|
Cancel() |
|
} |
|
|
|
// query implements the Query interface. |
|
type query struct { |
|
// The original query string. |
|
q string |
|
// Statements of the parsed query. |
|
stmts Statements |
|
// Timer stats for the query execution. |
|
stats *stats.TimerGroup |
|
// Cancelation function for the query. |
|
cancel func() |
|
|
|
// The engine against which the query is executed. |
|
ng *Engine |
|
} |
|
|
|
// Statements implements the Query interface. |
|
func (q *query) Statements() Statements { |
|
return q.stmts |
|
} |
|
|
|
// Stats implements the Query interface. |
|
func (q *query) Stats() *stats.TimerGroup { |
|
return q.stats |
|
} |
|
|
|
// Cancel implements the Query interface. |
|
func (q *query) Cancel() { |
|
if q.cancel != nil { |
|
q.cancel() |
|
} |
|
} |
|
|
|
// Exec implements the Query interface. |
|
func (q *query) Exec() *Result { |
|
res, err := q.ng.exec(q) |
|
return &Result{Err: err, Value: res} |
|
} |
|
|
|
// contextDone returns an error if the context was canceled or timed out. |
|
func contextDone(ctx context.Context, env string) error { |
|
select { |
|
case <-ctx.Done(): |
|
err := ctx.Err() |
|
switch err { |
|
case context.Canceled: |
|
return ErrQueryCanceled(env) |
|
case context.DeadlineExceeded: |
|
return ErrQueryTimeout(env) |
|
default: |
|
return err |
|
} |
|
default: |
|
return nil |
|
} |
|
} |
|
|
|
// Engine handles the liftetime of queries from beginning to end. |
|
// It is connected to a storage. |
|
type Engine struct { |
|
// The storage on which the engine operates. |
|
storage local.Storage |
|
|
|
// The base context for all queries and its cancellation function. |
|
baseCtx context.Context |
|
cancelQueries func() |
|
// The gate limiting the maximum number of concurrent and waiting queries. |
|
gate *queryGate |
|
} |
|
|
|
// NewEngine returns a new engine. |
|
func NewEngine(storage local.Storage) *Engine { |
|
ctx, cancel := context.WithCancel(context.Background()) |
|
return &Engine{ |
|
storage: storage, |
|
baseCtx: ctx, |
|
cancelQueries: cancel, |
|
gate: newQueryGate(*maxConcurrentQueries), |
|
} |
|
} |
|
|
|
// Stop the engine and cancel all running queries. |
|
func (ng *Engine) Stop() { |
|
ng.cancelQueries() |
|
} |
|
|
|
// NewInstantQuery returns an evaluation query for the given expression at the given time. |
|
func (ng *Engine) NewInstantQuery(es string, ts clientmodel.Timestamp) (Query, error) { |
|
return ng.NewRangeQuery(es, ts, ts, 0) |
|
} |
|
|
|
// NewRangeQuery returns an evaluation query for the given time range and with |
|
// the resolution set by the interval. |
|
func (ng *Engine) NewRangeQuery(qs string, start, end clientmodel.Timestamp, interval time.Duration) (Query, error) { |
|
expr, err := ParseExpr(qs) |
|
if err != nil { |
|
return nil, err |
|
} |
|
es := &EvalStmt{ |
|
Expr: expr, |
|
Start: start, |
|
End: end, |
|
Interval: interval, |
|
} |
|
|
|
qry := &query{ |
|
q: qs, |
|
stmts: Statements{es}, |
|
ng: ng, |
|
stats: stats.NewTimerGroup(), |
|
} |
|
return qry, nil |
|
} |
|
|
|
// testStmt is an internal helper statement that allows execution |
|
// of an arbitrary function during handling. It is used to test the Engine. |
|
type testStmt func(context.Context) error |
|
|
|
func (testStmt) String() string { return "test statement" } |
|
func (testStmt) DotGraph() string { return "test statement" } |
|
func (testStmt) stmt() {} |
|
|
|
func (ng *Engine) newTestQuery(stmts ...Statement) Query { |
|
qry := &query{ |
|
q: "test statement", |
|
stmts: Statements(stmts), |
|
ng: ng, |
|
stats: stats.NewTimerGroup(), |
|
} |
|
return qry |
|
} |
|
|
|
// exec executes the query. |
|
// |
|
// At this point per query only one EvalStmt is evaluated. Alert and record |
|
// statements are not handled by the Engine. |
|
func (ng *Engine) exec(q *query) (Value, error) { |
|
const env = "query execution" |
|
|
|
ctx, cancel := context.WithTimeout(q.ng.baseCtx, *defaultQueryTimeout) |
|
q.cancel = cancel |
|
|
|
queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start() |
|
|
|
if err := ng.gate.Start(ctx); err != nil { |
|
return nil, err |
|
} |
|
defer ng.gate.Done() |
|
|
|
queueTimer.Stop() |
|
|
|
// Cancel when execution is done or an error was raised. |
|
defer q.cancel() |
|
|
|
evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start() |
|
defer evalTimer.Stop() |
|
|
|
for _, stmt := range q.stmts { |
|
// The base context might already be canceled on the first iteration (e.g. during shutdown). |
|
if err := contextDone(ctx, env); err != nil { |
|
return nil, err |
|
} |
|
|
|
switch s := stmt.(type) { |
|
case *EvalStmt: |
|
// Currently, only one execution statement per query is allowed. |
|
return ng.execEvalStmt(ctx, q, s) |
|
|
|
case testStmt: |
|
if err := s(ctx); err != nil { |
|
return nil, err |
|
} |
|
|
|
default: |
|
panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", stmt)) |
|
} |
|
} |
|
return nil, nil |
|
} |
|
|
|
// execEvalStmt evaluates the expression of an evaluation statement for the given time range. |
|
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, error) { |
|
prepareTimer := query.stats.GetTimer(stats.TotalQueryPreparationTime).Start() |
|
analyzeTimer := query.stats.GetTimer(stats.QueryAnalysisTime).Start() |
|
|
|
// Only one execution statement per query is allowed. |
|
analyzer := &Analyzer{ |
|
Storage: ng.storage, |
|
Expr: s.Expr, |
|
Start: s.Start, |
|
End: s.End, |
|
} |
|
err := analyzer.Analyze(ctx) |
|
if err != nil { |
|
analyzeTimer.Stop() |
|
prepareTimer.Stop() |
|
return nil, err |
|
} |
|
analyzeTimer.Stop() |
|
|
|
preloadTimer := query.stats.GetTimer(stats.PreloadTime).Start() |
|
closer, err := analyzer.Prepare(ctx) |
|
if err != nil { |
|
preloadTimer.Stop() |
|
prepareTimer.Stop() |
|
return nil, err |
|
} |
|
defer closer.Close() |
|
|
|
preloadTimer.Stop() |
|
prepareTimer.Stop() |
|
|
|
evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start() |
|
// Instant evaluation. |
|
if s.Start == s.End && s.Interval == 0 { |
|
evaluator := &evaluator{ |
|
Timestamp: s.Start, |
|
ctx: ctx, |
|
} |
|
val, err := evaluator.Eval(s.Expr) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
evalTimer.Stop() |
|
return val, nil |
|
} |
|
|
|
// Range evaluation. |
|
sampleStreams := map[clientmodel.Fingerprint]*SampleStream{} |
|
for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) { |
|
|
|
if err := contextDone(ctx, "range evaluation"); err != nil { |
|
return nil, err |
|
} |
|
|
|
evaluator := &evaluator{ |
|
Timestamp: ts, |
|
ctx: ctx, |
|
} |
|
val, err := evaluator.Eval(s.Expr) |
|
if err != nil { |
|
return nil, err |
|
} |
|
vector, ok := val.(Vector) |
|
if !ok { |
|
return nil, fmt.Errorf("value for expression %q must be of type vector but is %s", s.Expr, val.Type()) |
|
} |
|
|
|
for _, sample := range vector { |
|
samplePair := metric.SamplePair{ |
|
Value: sample.Value, |
|
Timestamp: sample.Timestamp, |
|
} |
|
fp := sample.Metric.Metric.Fingerprint() |
|
if sampleStreams[fp] == nil { |
|
sampleStreams[fp] = &SampleStream{ |
|
Metric: sample.Metric, |
|
Values: metric.Values{samplePair}, |
|
} |
|
} else { |
|
sampleStreams[fp].Values = append(sampleStreams[fp].Values, samplePair) |
|
} |
|
|
|
} |
|
} |
|
evalTimer.Stop() |
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil { |
|
return nil, err |
|
} |
|
|
|
appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start() |
|
matrix := Matrix{} |
|
for _, sampleStream := range sampleStreams { |
|
matrix = append(matrix, sampleStream) |
|
} |
|
appendTimer.Stop() |
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil { |
|
return nil, err |
|
} |
|
|
|
sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start() |
|
sort.Sort(matrix) |
|
sortTimer.Stop() |
|
|
|
return matrix, nil |
|
} |
|
|
|
// An evaluator evaluates given expressions at a fixed timestamp. It is attached to an |
|
// engine through which it connects to a storage and reports errors. On timeout or |
|
// cancellation of its context it terminates. |
|
type evaluator struct { |
|
ctx context.Context |
|
|
|
Timestamp clientmodel.Timestamp |
|
} |
|
|
|
// fatalf causes a panic with the input formatted into an error. |
|
func (ev *evaluator) errorf(format string, args ...interface{}) { |
|
ev.error(fmt.Errorf(format, args...)) |
|
} |
|
|
|
// fatal causes a panic with the given error. |
|
func (ev *evaluator) error(err error) { |
|
panic(err) |
|
} |
|
|
|
// recover is the handler that turns panics into returns from the top level of evaluation. |
|
func (ev *evaluator) recover(errp *error) { |
|
e := recover() |
|
if e != nil { |
|
// Do not recover from runtime errors. |
|
if _, ok := e.(runtime.Error); ok { |
|
panic(e) |
|
} |
|
*errp = e.(error) |
|
} |
|
} |
|
|
|
// evalScalar attempts to evaluate e to a scalar value and errors otherwise. |
|
func (ev *evaluator) evalScalar(e Expr) *Scalar { |
|
val := ev.eval(e) |
|
sv, ok := val.(*Scalar) |
|
if !ok { |
|
ev.errorf("expected scalar but got %s", val.Type()) |
|
} |
|
return sv |
|
} |
|
|
|
// evalVector attempts to evaluate e to a vector value and errors otherwise. |
|
func (ev *evaluator) evalVector(e Expr) Vector { |
|
val := ev.eval(e) |
|
vec, ok := val.(Vector) |
|
if !ok { |
|
ev.errorf("expected vector but got %s", val.Type()) |
|
} |
|
return vec |
|
} |
|
|
|
// evalInt attempts to evaluate e into an integer and errors otherwise. |
|
func (ev *evaluator) evalInt(e Expr) int { |
|
sc := ev.evalScalar(e) |
|
return int(sc.Value) |
|
} |
|
|
|
// evalFloat attempts to evaluate e into a float and errors otherwise. |
|
func (ev *evaluator) evalFloat(e Expr) float64 { |
|
sc := ev.evalScalar(e) |
|
return float64(sc.Value) |
|
} |
|
|
|
// evalMatrix attempts to evaluate e into a matrix and errors otherwise. |
|
func (ev *evaluator) evalMatrix(e Expr) Matrix { |
|
val := ev.eval(e) |
|
mat, ok := val.(Matrix) |
|
if !ok { |
|
ev.errorf("expected matrix but got %s", val.Type()) |
|
} |
|
return mat |
|
} |
|
|
|
// evalMatrixBounds attempts to evaluate e to matrix boundaries and errors otherwise. |
|
func (ev *evaluator) evalMatrixBounds(e Expr) Matrix { |
|
ms, ok := e.(*MatrixSelector) |
|
if !ok { |
|
ev.errorf("matrix bounds can only be evaluated for matrix selectors, got %T", e) |
|
} |
|
return ev.matrixSelectorBounds(ms) |
|
} |
|
|
|
// evalOneOf evaluates e and errors unless the result is of one of the given types. |
|
func (ev *evaluator) evalOneOf(e Expr, t1, t2 ExprType) Value { |
|
val := ev.eval(e) |
|
if val.Type() != t1 && val.Type() != t2 { |
|
ev.errorf("expected %s or %s but got %s", t1, t2, val.Type()) |
|
} |
|
return val |
|
} |
|
|
|
func (ev *evaluator) Eval(expr Expr) (v Value, err error) { |
|
defer ev.recover(&err) |
|
return ev.eval(expr), nil |
|
} |
|
|
|
// eval evaluates the given expression as the given AST expression node requires. |
|
func (ev *evaluator) eval(expr Expr) Value { |
|
// This is the top-level evaluation method. |
|
// Thus, we check for timeout/cancellation here. |
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil { |
|
ev.error(err) |
|
} |
|
|
|
switch e := expr.(type) { |
|
case *AggregateExpr: |
|
vector := ev.evalVector(e.Expr) |
|
return ev.aggregation(e.Op, e.Grouping, e.KeepExtraLabels, vector) |
|
|
|
case *BinaryExpr: |
|
lhs := ev.evalOneOf(e.LHS, ExprScalar, ExprVector) |
|
rhs := ev.evalOneOf(e.RHS, ExprScalar, ExprVector) |
|
|
|
switch lt, rt := lhs.Type(), rhs.Type(); { |
|
case lt == ExprScalar && rt == ExprScalar: |
|
return &Scalar{ |
|
Value: scalarBinop(e.Op, lhs.(*Scalar).Value, rhs.(*Scalar).Value), |
|
Timestamp: ev.Timestamp, |
|
} |
|
|
|
case lt == ExprVector && rt == ExprVector: |
|
return ev.vectorBinop(e.Op, lhs.(Vector), rhs.(Vector), e.VectorMatching) |
|
|
|
case lt == ExprVector && rt == ExprScalar: |
|
return ev.vectorScalarBinop(e.Op, lhs.(Vector), rhs.(*Scalar), false) |
|
|
|
case lt == ExprScalar && rt == ExprVector: |
|
return ev.vectorScalarBinop(e.Op, rhs.(Vector), lhs.(*Scalar), true) |
|
} |
|
|
|
case *Call: |
|
return e.Func.Call(ev, e.Args) |
|
|
|
case *MatrixSelector: |
|
return ev.matrixSelector(e) |
|
|
|
case *NumberLiteral: |
|
return &Scalar{Value: e.Val, Timestamp: ev.Timestamp} |
|
|
|
case *ParenExpr: |
|
return ev.eval(e.Expr) |
|
|
|
case *StringLiteral: |
|
return &String{Value: e.Val, Timestamp: ev.Timestamp} |
|
|
|
case *UnaryExpr: |
|
smpl := ev.evalScalar(e.Expr) |
|
if e.Op == itemSUB { |
|
smpl.Value = -smpl.Value |
|
} |
|
return smpl |
|
|
|
case *VectorSelector: |
|
return ev.vectorSelector(e) |
|
} |
|
panic(fmt.Errorf("unhandled expression of type: %T", expr)) |
|
} |
|
|
|
// vectorSelector evaluates a *VectorSelector expression. |
|
func (ev *evaluator) vectorSelector(node *VectorSelector) Vector { |
|
vec := Vector{} |
|
for fp, it := range node.iterators { |
|
sampleCandidates := it.GetValueAtTime(ev.Timestamp.Add(-node.Offset)) |
|
samplePair := chooseClosestSample(sampleCandidates, ev.Timestamp.Add(-node.Offset)) |
|
if samplePair != nil { |
|
vec = append(vec, &Sample{ |
|
Metric: node.metrics[fp], |
|
Value: samplePair.Value, |
|
Timestamp: ev.Timestamp, |
|
}) |
|
} |
|
} |
|
return vec |
|
} |
|
|
|
// matrixSelector evaluates a *MatrixSelector expression. |
|
func (ev *evaluator) matrixSelector(node *MatrixSelector) Matrix { |
|
interval := metric.Interval{ |
|
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset), |
|
NewestInclusive: ev.Timestamp.Add(-node.Offset), |
|
} |
|
|
|
sampleStreams := make([]*SampleStream, 0, len(node.iterators)) |
|
for fp, it := range node.iterators { |
|
samplePairs := it.GetRangeValues(interval) |
|
if len(samplePairs) == 0 { |
|
continue |
|
} |
|
|
|
if node.Offset != 0 { |
|
for _, sp := range samplePairs { |
|
sp.Timestamp = sp.Timestamp.Add(node.Offset) |
|
} |
|
} |
|
|
|
sampleStream := &SampleStream{ |
|
Metric: node.metrics[fp], |
|
Values: samplePairs, |
|
} |
|
sampleStreams = append(sampleStreams, sampleStream) |
|
} |
|
return Matrix(sampleStreams) |
|
} |
|
|
|
// matrixSelectorBounds evaluates the boundaries of a *MatrixSelector. |
|
func (ev *evaluator) matrixSelectorBounds(node *MatrixSelector) Matrix { |
|
interval := metric.Interval{ |
|
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset), |
|
NewestInclusive: ev.Timestamp.Add(-node.Offset), |
|
} |
|
|
|
sampleStreams := make([]*SampleStream, 0, len(node.iterators)) |
|
for fp, it := range node.iterators { |
|
samplePairs := it.GetBoundaryValues(interval) |
|
if len(samplePairs) == 0 { |
|
continue |
|
} |
|
|
|
sampleStream := &SampleStream{ |
|
Metric: node.metrics[fp], |
|
Values: samplePairs, |
|
} |
|
sampleStreams = append(sampleStreams, sampleStream) |
|
} |
|
return Matrix(sampleStreams) |
|
} |
|
|
|
// vectorBinop evaluates a binary operation between two vector values. |
|
func (ev *evaluator) vectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching) Vector { |
|
result := make(Vector, 0, len(rhs)) |
|
// The control flow below handles one-to-one or many-to-one matching. |
|
// For one-to-many, swap sidedness and account for the swap when calculating |
|
// values. |
|
if matching.Card == CardOneToMany { |
|
lhs, rhs = rhs, lhs |
|
} |
|
// All samples from the rhs hashed by the matching label/values. |
|
rm := map[uint64]*Sample{} |
|
// Maps the hash of the label values used for matching to the hashes of the label |
|
// values of the include labels (if any). It is used to keep track of already |
|
// inserted samples. |
|
added := map[uint64][]uint64{} |
|
|
|
// Add all rhs samples to a map so we can easily find matches later. |
|
for _, rs := range rhs { |
|
hash := hashForMetric(rs.Metric.Metric, matching.On) |
|
// The rhs is guaranteed to be the 'one' side. Having multiple samples |
|
// with the same hash means that the matching is many-to-many, |
|
// which is not supported. |
|
if _, found := rm[hash]; matching.Card != CardManyToMany && found { |
|
// Many-to-many matching not allowed. |
|
ev.errorf("many-to-many matching not allowed") |
|
} |
|
// In many-to-many matching the entry is simply overwritten. It can thus only |
|
// be used to check whether any matching rhs entry exists but not retrieve them all. |
|
rm[hash] = rs |
|
} |
|
|
|
// For all lhs samples find a respective rhs sample and perform |
|
// the binary operation. |
|
for _, ls := range lhs { |
|
hash := hashForMetric(ls.Metric.Metric, matching.On) |
|
// Any lhs sample we encounter in an OR operation belongs to the result. |
|
if op == itemLOR { |
|
ls.Metric = resultMetric(op, ls, nil, matching) |
|
result = append(result, ls) |
|
added[hash] = nil // Ensure matching rhs sample is not added later. |
|
continue |
|
} |
|
|
|
rs, found := rm[hash] // Look for a match in the rhs vector. |
|
if !found { |
|
continue |
|
} |
|
var value clientmodel.SampleValue |
|
var keep bool |
|
|
|
if op == itemLAND { |
|
value = ls.Value |
|
keep = true |
|
} else { |
|
if _, exists := added[hash]; matching.Card == CardOneToOne && exists { |
|
// Many-to-one matching must be explicit. |
|
ev.errorf("many-to-one matching must be explicit") |
|
} |
|
// Account for potentially swapped sidedness. |
|
vl, vr := ls.Value, rs.Value |
|
if matching.Card == CardOneToMany { |
|
vl, vr = vr, vl |
|
} |
|
value, keep = vectorElemBinop(op, vl, vr) |
|
} |
|
|
|
if keep { |
|
metric := resultMetric(op, ls, rs, matching) |
|
// Check if the same label set has been added for a many-to-one matching before. |
|
if matching.Card == CardManyToOne || matching.Card == CardOneToMany { |
|
insHash := clientmodel.SignatureForLabels(metric.Metric, matching.Include) |
|
if ihs, exists := added[hash]; exists { |
|
for _, ih := range ihs { |
|
if ih == insHash { |
|
ev.errorf("metric with label set has already been matched") |
|
} |
|
} |
|
added[hash] = append(ihs, insHash) |
|
} else { |
|
added[hash] = []uint64{insHash} |
|
} |
|
} |
|
ns := &Sample{ |
|
Metric: metric, |
|
Value: value, |
|
Timestamp: ev.Timestamp, |
|
} |
|
result = append(result, ns) |
|
added[hash] = added[hash] // Set existance to true. |
|
} |
|
} |
|
|
|
// Add all remaining samples in the rhs in an OR operation if they |
|
// have not been matched up with a lhs sample. |
|
if op == itemLOR { |
|
for hash, rs := range rm { |
|
if _, exists := added[hash]; !exists { |
|
rs.Metric = resultMetric(op, rs, nil, matching) |
|
result = append(result, rs) |
|
} |
|
} |
|
} |
|
return result |
|
} |
|
|
|
// vectorScalarBinop evaluates a binary operation between a vector and a scalar. |
|
func (ev *evaluator) vectorScalarBinop(op itemType, lhs Vector, rhs *Scalar, swap bool) Vector { |
|
vector := make(Vector, 0, len(lhs)) |
|
|
|
for _, lhsSample := range lhs { |
|
lv, rv := lhsSample.Value, rhs.Value |
|
// lhs always contains the vector. If the original position was different |
|
// swap for calculating the value. |
|
if swap { |
|
lv, rv = rv, lv |
|
} |
|
value, keep := vectorElemBinop(op, lv, rv) |
|
if keep { |
|
lhsSample.Value = value |
|
if shouldDropMetricName(op) { |
|
lhsSample.Metric.Delete(clientmodel.MetricNameLabel) |
|
} |
|
vector = append(vector, lhsSample) |
|
} |
|
} |
|
return vector |
|
} |
|
|
|
// scalarBinop evaluates a binary operation between two scalars. |
|
func scalarBinop(op itemType, lhs, rhs clientmodel.SampleValue) clientmodel.SampleValue { |
|
switch op { |
|
case itemADD: |
|
return lhs + rhs |
|
case itemSUB: |
|
return lhs - rhs |
|
case itemMUL: |
|
return lhs * rhs |
|
case itemDIV: |
|
return lhs / rhs |
|
case itemMOD: |
|
if rhs != 0 { |
|
return clientmodel.SampleValue(int(lhs) % int(rhs)) |
|
} |
|
return clientmodel.SampleValue(math.NaN()) |
|
case itemEQL: |
|
return btos(lhs == rhs) |
|
case itemNEQ: |
|
return btos(lhs != rhs) |
|
case itemGTR: |
|
return btos(lhs > rhs) |
|
case itemLSS: |
|
return btos(lhs < rhs) |
|
case itemGTE: |
|
return btos(lhs >= rhs) |
|
case itemLTE: |
|
return btos(lhs <= rhs) |
|
} |
|
panic(fmt.Errorf("operator %q not allowed for scalar operations", op)) |
|
} |
|
|
|
// vectorElemBinop evaluates a binary operation between two vector elements. |
|
func vectorElemBinop(op itemType, lhs, rhs clientmodel.SampleValue) (clientmodel.SampleValue, bool) { |
|
switch op { |
|
case itemADD: |
|
return lhs + rhs, true |
|
case itemSUB: |
|
return lhs - rhs, true |
|
case itemMUL: |
|
return lhs * rhs, true |
|
case itemDIV: |
|
return lhs / rhs, true |
|
case itemMOD: |
|
if rhs != 0 { |
|
return clientmodel.SampleValue(int(lhs) % int(rhs)), true |
|
} |
|
return clientmodel.SampleValue(math.NaN()), true |
|
case itemEQL: |
|
return lhs, lhs == rhs |
|
case itemNEQ: |
|
return lhs, lhs != rhs |
|
case itemGTR: |
|
return lhs, lhs > rhs |
|
case itemLSS: |
|
return lhs, lhs < rhs |
|
case itemGTE: |
|
return lhs, lhs >= rhs |
|
case itemLTE: |
|
return lhs, lhs <= rhs |
|
} |
|
panic(fmt.Errorf("operator %q not allowed for operations between vectors", op)) |
|
} |
|
|
|
// labelIntersection returns the metric of common label/value pairs of two input metrics. |
|
func labelIntersection(metric1, metric2 clientmodel.COWMetric) clientmodel.COWMetric { |
|
for label, value := range metric1.Metric { |
|
if metric2.Metric[label] != value { |
|
metric1.Delete(label) |
|
} |
|
} |
|
return metric1 |
|
} |
|
|
|
type groupedAggregation struct { |
|
labels clientmodel.COWMetric |
|
value clientmodel.SampleValue |
|
valuesSquaredSum clientmodel.SampleValue |
|
groupCount int |
|
} |
|
|
|
// aggregation evaluates an aggregation operation on a vector. |
|
func (ev *evaluator) aggregation(op itemType, grouping clientmodel.LabelNames, keepExtra bool, vector Vector) Vector { |
|
|
|
result := map[uint64]*groupedAggregation{} |
|
|
|
for _, sample := range vector { |
|
groupingKey := clientmodel.SignatureForLabels(sample.Metric.Metric, grouping) |
|
|
|
groupedResult, ok := result[groupingKey] |
|
// Add a new group if it doesn't exist. |
|
if !ok { |
|
var m clientmodel.COWMetric |
|
if keepExtra { |
|
m = sample.Metric |
|
m.Delete(clientmodel.MetricNameLabel) |
|
} else { |
|
m = clientmodel.COWMetric{ |
|
Metric: clientmodel.Metric{}, |
|
Copied: true, |
|
} |
|
for _, l := range grouping { |
|
if v, ok := sample.Metric.Metric[l]; ok { |
|
m.Set(l, v) |
|
} |
|
} |
|
} |
|
result[groupingKey] = &groupedAggregation{ |
|
labels: m, |
|
value: sample.Value, |
|
valuesSquaredSum: sample.Value * sample.Value, |
|
groupCount: 1, |
|
} |
|
continue |
|
} |
|
// Add the sample to the existing group. |
|
if keepExtra { |
|
groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric) |
|
} |
|
|
|
switch op { |
|
case itemSum: |
|
groupedResult.value += sample.Value |
|
case itemAvg: |
|
groupedResult.value += sample.Value |
|
groupedResult.groupCount++ |
|
case itemMax: |
|
if groupedResult.value < sample.Value { |
|
groupedResult.value = sample.Value |
|
} |
|
case itemMin: |
|
if groupedResult.value > sample.Value { |
|
groupedResult.value = sample.Value |
|
} |
|
case itemCount: |
|
groupedResult.groupCount++ |
|
case itemStdvar, itemStddev: |
|
groupedResult.value += sample.Value |
|
groupedResult.valuesSquaredSum += sample.Value * sample.Value |
|
groupedResult.groupCount++ |
|
default: |
|
panic(fmt.Errorf("expected aggregation operator but got %q", op)) |
|
} |
|
} |
|
|
|
// Construct the result vector from the aggregated groups. |
|
resultVector := make(Vector, 0, len(result)) |
|
|
|
for _, aggr := range result { |
|
switch op { |
|
case itemAvg: |
|
aggr.value = aggr.value / clientmodel.SampleValue(aggr.groupCount) |
|
case itemCount: |
|
aggr.value = clientmodel.SampleValue(aggr.groupCount) |
|
case itemStdvar: |
|
avg := float64(aggr.value) / float64(aggr.groupCount) |
|
aggr.value = clientmodel.SampleValue(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg) |
|
case itemStddev: |
|
avg := float64(aggr.value) / float64(aggr.groupCount) |
|
aggr.value = clientmodel.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)) |
|
default: |
|
// For other aggregations, we already have the right value. |
|
} |
|
sample := &Sample{ |
|
Metric: aggr.labels, |
|
Value: aggr.value, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultVector = append(resultVector, sample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// btos returns 1 if b is true, 0 otherwise. |
|
func btos(b bool) clientmodel.SampleValue { |
|
if b { |
|
return 1 |
|
} |
|
return 0 |
|
} |
|
|
|
// shouldDropMetricName returns whether the metric name should be dropped in the |
|
// result of the op operation. |
|
func shouldDropMetricName(op itemType) bool { |
|
switch op { |
|
case itemADD, itemSUB, itemDIV, itemMUL, itemMOD: |
|
return true |
|
default: |
|
return false |
|
} |
|
} |
|
|
|
// resultMetric returns the metric for the given sample(s) based on the vector |
|
// binary operation and the matching options. |
|
func resultMetric(op itemType, ls, rs *Sample, matching *VectorMatching) clientmodel.COWMetric { |
|
if len(matching.On) == 0 || op == itemLOR || op == itemLAND { |
|
if shouldDropMetricName(op) { |
|
ls.Metric.Delete(clientmodel.MetricNameLabel) |
|
} |
|
return ls.Metric |
|
} |
|
|
|
m := clientmodel.Metric{} |
|
for _, ln := range matching.On { |
|
m[ln] = ls.Metric.Metric[ln] |
|
} |
|
|
|
for _, ln := range matching.Include { |
|
// Included labels from the `group_x` modifier are taken from the "many"-side. |
|
v, ok := ls.Metric.Metric[ln] |
|
if ok { |
|
m[ln] = v |
|
} |
|
} |
|
return clientmodel.COWMetric{false, m} |
|
} |
|
|
|
// hashForMetric calculates a hash value for the given metric based on the matching |
|
// options for the binary operation. |
|
func hashForMetric(metric clientmodel.Metric, withLabels clientmodel.LabelNames) uint64 { |
|
var labels clientmodel.LabelNames |
|
|
|
if len(withLabels) > 0 { |
|
var match bool |
|
for _, ln := range withLabels { |
|
if _, match = metric[ln]; !match { |
|
break |
|
} |
|
} |
|
// If the metric does not contain the labels to match on, build the hash |
|
// over the whole metric to give it a unique hash. |
|
if !match { |
|
labels = make(clientmodel.LabelNames, 0, len(metric)) |
|
for ln := range metric { |
|
labels = append(labels, ln) |
|
} |
|
} else { |
|
labels = withLabels |
|
} |
|
} else { |
|
labels = make(clientmodel.LabelNames, 0, len(metric)) |
|
for ln := range metric { |
|
if ln != clientmodel.MetricNameLabel { |
|
labels = append(labels, ln) |
|
} |
|
} |
|
} |
|
return clientmodel.SignatureForLabels(metric, labels) |
|
} |
|
|
|
// chooseClosestSample chooses the closest sample of a list of samples |
|
// surrounding a given target time. If samples are found both before and after |
|
// the target time, the sample value is interpolated between these. Otherwise, |
|
// the single closest sample is returned verbatim. |
|
func chooseClosestSample(samples metric.Values, timestamp clientmodel.Timestamp) *metric.SamplePair { |
|
var closestBefore *metric.SamplePair |
|
var closestAfter *metric.SamplePair |
|
for _, candidate := range samples { |
|
delta := candidate.Timestamp.Sub(timestamp) |
|
// Samples before target time. |
|
if delta < 0 { |
|
// Ignore samples outside of staleness policy window. |
|
if -delta > *stalenessDelta { |
|
continue |
|
} |
|
// Ignore samples that are farther away than what we've seen before. |
|
if closestBefore != nil && candidate.Timestamp.Before(closestBefore.Timestamp) { |
|
continue |
|
} |
|
sample := candidate |
|
closestBefore = &sample |
|
} |
|
|
|
// Samples after target time. |
|
if delta >= 0 { |
|
// Ignore samples outside of staleness policy window. |
|
if delta > *stalenessDelta { |
|
continue |
|
} |
|
// Ignore samples that are farther away than samples we've seen before. |
|
if closestAfter != nil && candidate.Timestamp.After(closestAfter.Timestamp) { |
|
continue |
|
} |
|
sample := candidate |
|
closestAfter = &sample |
|
} |
|
} |
|
|
|
switch { |
|
case closestBefore != nil && closestAfter != nil: |
|
return interpolateSamples(closestBefore, closestAfter, timestamp) |
|
case closestBefore != nil: |
|
return closestBefore |
|
default: |
|
return closestAfter |
|
} |
|
} |
|
|
|
// interpolateSamples interpolates a value at a target time between two |
|
// provided sample pairs. |
|
func interpolateSamples(first, second *metric.SamplePair, timestamp clientmodel.Timestamp) *metric.SamplePair { |
|
dv := second.Value - first.Value |
|
dt := second.Timestamp.Sub(first.Timestamp) |
|
|
|
dDt := dv / clientmodel.SampleValue(dt) |
|
offset := clientmodel.SampleValue(timestamp.Sub(first.Timestamp)) |
|
|
|
return &metric.SamplePair{ |
|
Value: first.Value + (offset * dDt), |
|
Timestamp: timestamp, |
|
} |
|
} |
|
|
|
// A queryGate controls the maximum number of concurrently running and waiting queries. |
|
type queryGate struct { |
|
ch chan struct{} |
|
} |
|
|
|
// newQueryGate returns a query gate that limits the number of queries |
|
// being concurrently executed. |
|
func newQueryGate(length int) *queryGate { |
|
return &queryGate{ |
|
ch: make(chan struct{}, length), |
|
} |
|
} |
|
|
|
// Start blocks until the gate has a free spot or the context is done. |
|
func (g *queryGate) Start(ctx context.Context) error { |
|
select { |
|
case <-ctx.Done(): |
|
return contextDone(ctx, "query queue") |
|
case g.ch <- struct{}{}: |
|
return nil |
|
} |
|
} |
|
|
|
// Done releases a single spot in the gate. |
|
func (g *queryGate) Done() { |
|
select { |
|
case <-g.ch: |
|
default: |
|
panic("engine.queryGate.Done: more operations done than started") |
|
} |
|
}
|
|
|