The Prometheus monitoring system and time series database.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

897 lines
20 KiB

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"runtime"
"strconv"
"strings"
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/utility"
)
type parser struct {
lex *lexer
token [3]item
peekCount int
}
// ParseErr wraps a parsing error with line and position context.
// If the parsing input was a single line, line will be 0 and omitted
// from the error string.
type ParseErr struct {
Line, Pos int
Err error
}
func (e *ParseErr) Error() string {
if e.Line == 0 {
return fmt.Sprintf("Parse error at char %d: %s", e.Pos, e.Err)
}
return fmt.Sprintf("Parse error at line %d, char %d: %s", e.Line, e.Pos, e.Err)
}
// ParseStmts parses the input and returns the resulting statements or any ocurring error.
func ParseStmts(input string) (Statements, error) {
p := newParser(input)
stmts, err := p.parseStmts()
if err != nil {
return nil, err
}
err = p.typecheck(stmts)
return stmts, err
}
// ParseExpr returns the expression parsed from the input.
func ParseExpr(input string) (Expr, error) {
p := newParser(input)
expr, err := p.parseExpr()
if err != nil {
return nil, err
}
err = p.typecheck(expr)
return expr, err
}
// newParser returns a new parser.
func newParser(input string) *parser {
p := &parser{
lex: lex(input),
}
return p
}
// parseStmts parses a sequence of statements from the input.
func (p *parser) parseStmts() (stmts Statements, err error) {
defer p.recover(&err)
stmts = Statements{}
for p.peek().typ != itemEOF {
if p.peek().typ == itemComment {
continue
}
stmts = append(stmts, p.stmt())
}
return
}
// parseExpr parses a single expression from the input.
func (p *parser) parseExpr() (expr Expr, err error) {
defer p.recover(&err)
for p.peek().typ != itemEOF {
if p.peek().typ == itemComment {
continue
}
if expr != nil {
p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:])
}
expr = p.expr()
}
if expr == nil {
p.errorf("no expression found in input")
}
return
}
// typecheck checks correct typing of the parsed statements or expression.
func (p *parser) typecheck(node Node) (err error) {
defer p.recover(&err)
p.checkType(node)
return nil
}
// next returns the next token.
func (p *parser) next() item {
if p.peekCount > 0 {
p.peekCount--
} else {
t := p.lex.nextItem()
// Skip comments.
for t.typ == itemComment {
t = p.lex.nextItem()
}
p.token[0] = t
}
if p.token[p.peekCount].typ == itemError {
p.errorf("%s", p.token[p.peekCount].val)
}
return p.token[p.peekCount]
}
// peek returns but does not consume the next token.
func (p *parser) peek() item {
if p.peekCount > 0 {
return p.token[p.peekCount-1]
}
p.peekCount = 1
t := p.lex.nextItem()
// Skip comments.
for t.typ == itemComment {
t = p.lex.nextItem()
}
p.token[0] = t
return p.token[0]
}
// backup backs the input stream up one token.
func (p *parser) backup() {
p.peekCount++
}
// errorf formats the error and terminates processing.
func (p *parser) errorf(format string, args ...interface{}) {
p.error(fmt.Errorf(format, args...))
}
// error terminates processing.
func (p *parser) error(err error) {
perr := &ParseErr{
Line: p.lex.lineNumber(),
Pos: p.lex.linePosition(),
Err: err,
}
if strings.Count(strings.TrimSpace(p.lex.input), "\n") == 0 {
perr.Line = 0
}
panic(perr)
}
// expect consumes the next token and guarantees it has the required type.
func (p *parser) expect(exp itemType, context string) item {
token := p.next()
if token.typ != exp {
p.errorf("unexpected %s in %s, expected %s", token.desc(), context, exp.desc())
}
return token
}
// expectOneOf consumes the next token and guarantees it has one of the required types.
func (p *parser) expectOneOf(exp1, exp2 itemType, context string) item {
token := p.next()
if token.typ != exp1 && token.typ != exp2 {
p.errorf("unexpected %s in %s, expected %s or %s", token.desc(), context, exp1.desc(), exp2.desc())
}
return token
}
// recover is the handler that turns panics into returns from the top level of Parse.
func (p *parser) recover(errp *error) {
e := recover()
if e != nil {
if _, ok := e.(runtime.Error); ok {
panic(e)
}
*errp = e.(error)
}
return
}
// stmt parses any statement.
//
// alertStatement | recordStatement
//
func (p *parser) stmt() Statement {
switch tok := p.peek(); tok.typ {
case itemAlert:
return p.alertStmt()
case itemIdentifier, itemMetricIdentifier:
return p.recordStmt()
}
p.errorf("no valid statement detected")
return nil
}
// alertStmt parses an alert rule.
//
// ALERT name IF expr [FOR duration] [WITH label_set]
// SUMMARY "summary"
// DESCRIPTION "description"
//
func (p *parser) alertStmt() *AlertStmt {
const ctx = "alert statement"
p.expect(itemAlert, ctx)
name := p.expect(itemIdentifier, ctx)
// Alerts require a vector typed expression.
p.expect(itemIf, ctx)
expr := p.expr()
// Optional for clause.
var duration time.Duration
var err error
if p.peek().typ == itemFor {
p.next()
dur := p.expect(itemDuration, ctx)
duration, err = parseDuration(dur.val)
if err != nil {
p.error(err)
}
}
lset := clientmodel.LabelSet{}
if p.peek().typ == itemWith {
p.expect(itemWith, ctx)
lset = p.labelSet()
}
p.expect(itemSummary, ctx)
sum := trimOne(p.expect(itemString, ctx).val)
p.expect(itemDescription, ctx)
desc := trimOne(p.expect(itemString, ctx).val)
return &AlertStmt{
Name: name.val,
Expr: expr,
Duration: duration,
Labels: lset,
Summary: sum,
Description: desc,
}
}
// recordStmt parses a recording rule.
func (p *parser) recordStmt() *RecordStmt {
const ctx = "record statement"
name := p.expectOneOf(itemIdentifier, itemMetricIdentifier, ctx).val
var lset clientmodel.LabelSet
if p.peek().typ == itemLeftBrace {
lset = p.labelSet()
}
p.expect(itemAssign, ctx)
expr := p.expr()
return &RecordStmt{
Name: name,
Labels: lset,
Expr: expr,
}
}
// expr parses any expression.
func (p *parser) expr() Expr {
// Parse the starting expression.
expr := p.unaryExpr()
if expr == nil {
p.errorf("no valid expression found")
}
// Loop through the operations and construct a binary operation tree based
// on the operators' precedence.
for {
// If the next token is not an operator the expression is done.
op := p.peek().typ
if !op.isOperator() {
return expr
}
p.next() // Consume operator.
// Parse optional operator matching options. Its validity
// is checked in the type-checking stage.
vecMatching := &VectorMatching{
Card: CardOneToOne,
}
if op == itemLAND || op == itemLOR {
vecMatching.Card = CardManyToMany
}
// Parse ON clause.
if p.peek().typ == itemOn {
p.next()
vecMatching.On = p.labels()
// Parse grouping.
if t := p.peek().typ; t == itemGroupLeft {
p.next()
vecMatching.Card = CardManyToOne
vecMatching.Include = p.labels()
} else if t == itemGroupRight {
p.next()
vecMatching.Card = CardOneToMany
vecMatching.Include = p.labels()
}
}
for _, ln := range vecMatching.On {
for _, ln2 := range vecMatching.Include {
if ln == ln2 {
p.errorf("label %q must not occur in ON and INCLUDE clause at once", ln)
}
}
}
// Parse the next operand.
rhs := p.unaryExpr()
if rhs == nil {
p.errorf("missing right-hand side in binary expression")
}
// Assign the new root based on the precendence of the LHS and RHS operators.
if lhs, ok := expr.(*BinaryExpr); ok && lhs.Op.precedence() < op.precedence() {
expr = &BinaryExpr{
Op: lhs.Op,
LHS: lhs.LHS,
RHS: &BinaryExpr{
Op: op,
LHS: lhs.RHS,
RHS: rhs,
VectorMatching: vecMatching,
},
VectorMatching: lhs.VectorMatching,
}
} else {
expr = &BinaryExpr{
Op: op,
LHS: expr,
RHS: rhs,
VectorMatching: vecMatching,
}
}
}
return nil
}
// unaryExpr parses a unary expression.
//
// <vector_selector> | <matrix_selector> | (+|-) <number_literal> | '(' <expr> ')'
//
func (p *parser) unaryExpr() Expr {
switch t := p.peek(); t.typ {
case itemADD, itemSUB:
p.next()
e := p.unaryExpr()
// Simplify unary expressions for number literals.
if nl, ok := e.(*NumberLiteral); ok {
if t.typ == itemSUB {
nl.Val *= -1
}
return nl
}
return &UnaryExpr{Op: t.typ, Expr: e}
case itemLeftParen:
p.next()
e := p.expr()
p.expect(itemRightParen, "paren expression")
return &ParenExpr{Expr: e}
}
e := p.primaryExpr()
// Expression might be followed by a range selector.
if p.peek().typ == itemLeftBracket {
vs, ok := e.(*VectorSelector)
if !ok {
p.errorf("range specification must be preceded by a metric selector, but follows a %T instead", e)
}
e = p.rangeSelector(vs)
}
return e
}
// rangeSelector parses a matrix selector based on a given vector selector.
//
// <vector_selector> '[' <duration> ']'
//
func (p *parser) rangeSelector(vs *VectorSelector) *MatrixSelector {
const ctx = "matrix selector"
p.next()
var erange, offset time.Duration
var err error
erangeStr := p.expect(itemDuration, ctx).val
erange, err = parseDuration(erangeStr)
if err != nil {
p.error(err)
}
p.expect(itemRightBracket, ctx)
// Parse optional offset.
if p.peek().typ == itemOffset {
p.next()
offi := p.expect(itemDuration, ctx)
offset, err = parseDuration(offi.val)
if err != nil {
p.error(err)
}
}
e := &MatrixSelector{
Name: vs.Name,
LabelMatchers: vs.LabelMatchers,
Range: erange,
Offset: offset,
}
return e
}
// parseNumber parses a number.
func (p *parser) number(val string) float64 {
n, err := strconv.ParseInt(val, 0, 64)
f := float64(n)
if err != nil {
f, err = strconv.ParseFloat(val, 64)
}
if err != nil {
p.errorf("error parsing number: %s", err)
}
return f
}
// primaryExpr parses a primary expression.
//
// <metric_name> | <function_call> | <vector_aggregation> | <literal>
//
func (p *parser) primaryExpr() Expr {
switch t := p.next(); {
case t.typ == itemNumber:
f := p.number(t.val)
return &NumberLiteral{clientmodel.SampleValue(f)}
case t.typ == itemString:
s := t.val[1 : len(t.val)-1]
return &StringLiteral{s}
case t.typ == itemLeftBrace:
// Metric selector without metric name.
p.backup()
return p.vectorSelector("")
case t.typ == itemIdentifier:
// Check for function call.
if p.peek().typ == itemLeftParen {
return p.call(t.val)
}
fallthrough // Else metric selector.
case t.typ == itemMetricIdentifier:
return p.vectorSelector(t.val)
case t.typ.isAggregator():
p.backup()
return p.aggrExpr()
}
return nil
}
// labels parses a list of labelnames.
//
// '(' <label_name>, ... ')'
//
func (p *parser) labels() clientmodel.LabelNames {
const ctx = "grouping opts"
p.expect(itemLeftParen, ctx)
labels := clientmodel.LabelNames{}
for {
id := p.expect(itemIdentifier, ctx)
labels = append(labels, clientmodel.LabelName(id.val))
if p.peek().typ != itemComma {
break
}
p.next()
}
p.expect(itemRightParen, ctx)
return labels
}
// aggrExpr parses an aggregation expression.
//
// <aggr_op> (<vector_expr>) [by <labels>] [keeping_extra]
// <aggr_op> [by <labels>] [keeping_extra] (<vector_expr>)
//
func (p *parser) aggrExpr() *AggregateExpr {
const ctx = "aggregation"
agop := p.next()
if !agop.typ.isAggregator() {
p.errorf("expected aggregation operator but got %s", agop)
}
var grouping clientmodel.LabelNames
var keepExtra bool
modifiersFirst := false
if p.peek().typ == itemBy {
p.next()
grouping = p.labels()
modifiersFirst = true
}
if p.peek().typ == itemKeepingExtra {
p.next()
keepExtra = true
modifiersFirst = true
}
p.expect(itemLeftParen, ctx)
e := p.expr()
p.expect(itemRightParen, ctx)
if !modifiersFirst {
if p.peek().typ == itemBy {
if len(grouping) > 0 {
p.errorf("aggregation must only contain one grouping clause")
}
p.next()
grouping = p.labels()
}
if p.peek().typ == itemKeepingExtra {
p.next()
keepExtra = true
}
}
return &AggregateExpr{
Op: agop.typ,
Expr: e,
Grouping: grouping,
KeepExtraLabels: keepExtra,
}
}
// call parses a function call.
//
// <func_name> '(' [ <arg_expr>, ...] ')'
//
func (p *parser) call(name string) *Call {
const ctx = "function call"
fn, exist := getFunction(name)
if !exist {
p.errorf("unknown function with name %q", name)
}
p.expect(itemLeftParen, ctx)
// Might be call without args.
if p.peek().typ == itemRightParen {
p.next() // Consume.
return &Call{fn, nil}
}
var args []Expr
for {
e := p.expr()
args = append(args, e)
// Terminate if no more arguments.
if p.peek().typ != itemComma {
break
}
p.next()
}
// Call must be closed.
p.expect(itemRightParen, ctx)
return &Call{Func: fn, Args: args}
}
// labelSet parses a set of label matchers
//
// '{' [ <labelname> '=' <match_string>, ... ] '}'
//
func (p *parser) labelSet() clientmodel.LabelSet {
set := clientmodel.LabelSet{}
for _, lm := range p.labelMatchers(itemEQL) {
set[lm.Name] = lm.Value
}
return set
}
// labelMatchers parses a set of label matchers.
//
// '{' [ <labelname> <match_op> <match_string>, ... ] '}'
//
func (p *parser) labelMatchers(operators ...itemType) metric.LabelMatchers {
const ctx = "label matching"
matchers := metric.LabelMatchers{}
p.expect(itemLeftBrace, ctx)
// Check if no matchers are provided.
if p.peek().typ == itemRightBrace {
p.next()
return matchers
}
for {
label := p.expect(itemIdentifier, ctx)
op := p.next().typ
if !op.isOperator() {
p.errorf("expected label matching operator but got %s", op)
}
var validOp = false
for _, allowedOp := range operators {
if op == allowedOp {
validOp = true
}
}
if !validOp {
p.errorf("operator must be one of %q, is %q", operators, op)
}
val := trimOne(p.expect(itemString, ctx).val)
// Map the item to the respective match type.
var matchType metric.MatchType
switch op {
case itemEQL:
matchType = metric.Equal
case itemNEQ:
matchType = metric.NotEqual
case itemEQLRegex:
matchType = metric.RegexMatch
case itemNEQRegex:
matchType = metric.RegexNoMatch
default:
p.errorf("item %q is not a metric match type", op)
}
m, err := metric.NewLabelMatcher(
matchType,
clientmodel.LabelName(label.val),
clientmodel.LabelValue(val),
)
if err != nil {
p.error(err)
}
matchers = append(matchers, m)
// Terminate list if last matcher.
if p.peek().typ != itemComma {
break
}
p.next()
}
p.expect(itemRightBrace, ctx)
return matchers
}
// metricSelector parses a new metric selector.
//
// <metric_identifier> [<label_matchers>] [ offset <duration> ]
// [<metric_identifier>] <label_matchers> [ offset <duration> ]
//
func (p *parser) vectorSelector(name string) *VectorSelector {
const ctx = "metric selector"
var matchers metric.LabelMatchers
// Parse label matching if any.
if t := p.peek(); t.typ == itemLeftBrace {
matchers = p.labelMatchers(itemEQL, itemNEQ, itemEQLRegex, itemNEQRegex)
}
// Metric name must not be set in the label matchers and before at the same time.
if name != "" {
for _, m := range matchers {
if m.Name == clientmodel.MetricNameLabel {
p.errorf("metric name must not be set twice: %q or %q", name, m.Value)
}
}
// Set name label matching.
matchers = append(matchers, &metric.LabelMatcher{
Type: metric.Equal,
Name: clientmodel.MetricNameLabel,
Value: clientmodel.LabelValue(name),
})
}
if len(matchers) == 0 {
p.errorf("vector selector must contain label matchers or metric name")
}
var err error
var offset time.Duration
// Parse optional offset.
if p.peek().typ == itemOffset {
p.next()
offi := p.expect(itemDuration, ctx)
offset, err = parseDuration(offi.val)
if err != nil {
p.error(err)
}
}
return &VectorSelector{
Name: name,
LabelMatchers: matchers,
Offset: offset,
}
}
// expectType checks the type of the node and raises an error if it
// is not of the expected type.
func (p *parser) expectType(node Node, want ExprType, context string) {
t := p.checkType(node)
if t != want {
p.errorf("expected type %s in %s, got %s", want, context, t)
}
}
// check the types of the children of each node and raise an error
// if they do not form a valid node.
//
// Some of these checks are redundant as the the parsing stage does not allow
// them, but the costs are small and might reveal errors when making changes.
func (p *parser) checkType(node Node) (typ ExprType) {
// For expressions the type is determined by their Type function.
// Statements and lists do not have a type but are not invalid either.
switch n := node.(type) {
case Statements, Expressions, Statement:
typ = ExprNone
case Expr:
typ = n.Type()
default:
p.errorf("unknown node type: %T", node)
}
// Recursively check correct typing for child nodes and raise
// errors in case of bad typing.
switch n := node.(type) {
case Statements:
for _, s := range n {
p.expectType(s, ExprNone, "statement list")
}
case *AlertStmt:
p.expectType(n.Expr, ExprVector, "alert statement")
case *EvalStmt:
ty := p.checkType(n.Expr)
if ty == ExprNone {
p.errorf("evaluation statement must have a valid expression type but got %s", ty)
}
case *RecordStmt:
p.expectType(n.Expr, ExprVector, "record statement")
case Expressions:
for _, e := range n {
ty := p.checkType(e)
if ty == ExprNone {
p.errorf("expression must have a valid expression type but got %s", ty)
}
}
case *AggregateExpr:
if !n.Op.isAggregator() {
p.errorf("aggregation operator expected in aggregation expression but got %q", n.Op)
}
p.expectType(n.Expr, ExprVector, "aggregation expression")
case *BinaryExpr:
lt := p.checkType(n.LHS)
rt := p.checkType(n.RHS)
if !n.Op.isOperator() {
p.errorf("only logical and arithmetic operators allowed in binary expression, got %q", n.Op)
}
if (lt != ExprScalar && lt != ExprVector) || (rt != ExprScalar && rt != ExprVector) {
p.errorf("binary expression must contain only scalar and vector types")
}
if (lt != ExprVector || rt != ExprVector) && n.VectorMatching != nil {
if len(n.VectorMatching.On) > 0 {
p.errorf("vector matching only allowed between vectors")
}
n.VectorMatching = nil
} else {
// Both operands are vectors.
if n.Op == itemLAND || n.Op == itemLOR {
if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne {
p.errorf("no grouping allowed for AND and OR operations")
}
if n.VectorMatching.Card != CardManyToMany {
p.errorf("AND and OR operations must always be many-to-many")
}
}
}
if (lt == ExprScalar || rt == ExprScalar) && (n.Op == itemLAND || n.Op == itemLOR) {
p.errorf("AND and OR not allowed in binary scalar expression")
}
case *Call:
nargs := len(n.Func.ArgTypes)
if na := nargs - n.Func.OptionalArgs; na > len(n.Args) {
p.errorf("expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args))
}
if nargs < len(n.Args) {
p.errorf("expected at most %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args))
}
for i, arg := range n.Args {
p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name))
}
case *ParenExpr:
p.checkType(n.Expr)
case *UnaryExpr:
if n.Op != itemADD && n.Op != itemSUB {
p.errorf("only + and - operators allowed for unary expressions")
}
p.expectType(n.Expr, ExprScalar, "unary expression")
case *NumberLiteral, *MatrixSelector, *StringLiteral, *VectorSelector:
// Nothing to do for terminals.
default:
p.errorf("unknown node type: %T", node)
}
return
}
func parseDuration(ds string) (time.Duration, error) {
dur, err := utility.StringToDuration(ds)
if err != nil {
return 0, err
}
if dur == 0 {
return 0, fmt.Errorf("duration must be greater than 0")
}
return dur, nil
}
// trimOne removes the first and last character from a string.
func trimOne(s string) string {
if len(s) > 0 {
s = s[1:]
}
if len(s) > 0 {
s = s[:len(s)-1]
}
return s
}