mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
716 lines
19 KiB
716 lines
19 KiB
// Copyright 2015 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package promql |
|
|
|
import ( |
|
"container/heap" |
|
"math" |
|
"sort" |
|
"strconv" |
|
"time" |
|
|
|
clientmodel "github.com/prometheus/client_golang/model" |
|
|
|
"github.com/prometheus/prometheus/storage/metric" |
|
) |
|
|
|
// Function represents a function of the expression language and is |
|
// used by function nodes. |
|
type Function struct { |
|
Name string |
|
ArgTypes []ExprType |
|
OptionalArgs int |
|
ReturnType ExprType |
|
Call func(ev *evaluator, args Expressions) Value |
|
} |
|
|
|
// === time() clientmodel.SampleValue === |
|
func funcTime(ev *evaluator, args Expressions) Value { |
|
return &Scalar{ |
|
Value: clientmodel.SampleValue(ev.Timestamp.Unix()), |
|
Timestamp: ev.Timestamp, |
|
} |
|
} |
|
|
|
// === delta(matrix ExprMatrix, isCounter=0 ExprScalar) Vector === |
|
func funcDelta(ev *evaluator, args Expressions) Value { |
|
isCounter := len(args) >= 2 && ev.evalInt(args[1]) > 0 |
|
resultVector := Vector{} |
|
|
|
// If we treat these metrics as counters, we need to fetch all values |
|
// in the interval to find breaks in the timeseries' monotonicity. |
|
// I.e. if a counter resets, we want to ignore that reset. |
|
var matrixValue Matrix |
|
if isCounter { |
|
matrixValue = ev.evalMatrix(args[0]) |
|
} else { |
|
matrixValue = ev.evalMatrixBounds(args[0]) |
|
} |
|
for _, samples := range matrixValue { |
|
// No sense in trying to compute a delta without at least two points. Drop |
|
// this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
|
|
counterCorrection := clientmodel.SampleValue(0) |
|
lastValue := clientmodel.SampleValue(0) |
|
for _, sample := range samples.Values { |
|
currentValue := sample.Value |
|
if isCounter && currentValue < lastValue { |
|
counterCorrection += lastValue - currentValue |
|
} |
|
lastValue = currentValue |
|
} |
|
resultValue := lastValue - samples.Values[0].Value + counterCorrection |
|
|
|
targetInterval := args[0].(*MatrixSelector).Range |
|
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp) |
|
if sampledInterval == 0 { |
|
// Only found one sample. Cannot compute a rate from this. |
|
continue |
|
} |
|
// Correct for differences in target vs. actual delta interval. |
|
// |
|
// Above, we didn't actually calculate the delta for the specified target |
|
// interval, but for an interval between the first and last found samples |
|
// under the target interval, which will usually have less time between |
|
// them. Depending on how many samples are found under a target interval, |
|
// the delta results are distorted and temporal aliasing occurs (ugly |
|
// bumps). This effect is corrected for below. |
|
intervalCorrection := clientmodel.SampleValue(targetInterval) / clientmodel.SampleValue(sampledInterval) |
|
resultValue *= intervalCorrection |
|
|
|
resultSample := &Sample{ |
|
Metric: samples.Metric, |
|
Value: resultValue, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultSample.Metric.Delete(clientmodel.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === rate(node ExprMatrix) Vector === |
|
func funcRate(ev *evaluator, args Expressions) Value { |
|
args = append(args, &NumberLiteral{1}) |
|
vector := funcDelta(ev, args).(Vector) |
|
|
|
// TODO: could be other type of ExprMatrix in the future (right now, only |
|
// MatrixSelector exists). Find a better way of getting the duration of a |
|
// matrix, such as looking at the samples themselves. |
|
interval := args[0].(*MatrixSelector).Range |
|
for i := range vector { |
|
vector[i].Value /= clientmodel.SampleValue(interval / time.Second) |
|
} |
|
return vector |
|
} |
|
|
|
// === sort(node ExprVector) Vector === |
|
func funcSort(ev *evaluator, args Expressions) Value { |
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) |
|
sort.Sort(byValueSorter) |
|
return Vector(byValueSorter) |
|
} |
|
|
|
// === sortDesc(node ExprVector) Vector === |
|
func funcSortDesc(ev *evaluator, args Expressions) Value { |
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return Vector(byValueSorter) |
|
} |
|
|
|
// === topk(k ExprScalar, node ExprVector) Vector === |
|
func funcTopk(ev *evaluator, args Expressions) Value { |
|
k := ev.evalInt(args[0]) |
|
if k < 1 { |
|
return Vector{} |
|
} |
|
vector := ev.evalVector(args[1]) |
|
|
|
topk := make(vectorByValueHeap, 0, k) |
|
|
|
for _, el := range vector { |
|
if len(topk) < k || topk[0].Value < el.Value { |
|
if len(topk) == k { |
|
heap.Pop(&topk) |
|
} |
|
heap.Push(&topk, el) |
|
} |
|
} |
|
sort.Sort(sort.Reverse(topk)) |
|
return Vector(topk) |
|
} |
|
|
|
// === bottomk(k ExprScalar, node ExprVector) Vector === |
|
func funcBottomk(ev *evaluator, args Expressions) Value { |
|
k := ev.evalInt(args[0]) |
|
if k < 1 { |
|
return Vector{} |
|
} |
|
vector := ev.evalVector(args[1]) |
|
|
|
bottomk := make(vectorByValueHeap, 0, k) |
|
bkHeap := reverseHeap{Interface: &bottomk} |
|
|
|
for _, el := range vector { |
|
if len(bottomk) < k || bottomk[0].Value > el.Value { |
|
if len(bottomk) == k { |
|
heap.Pop(&bkHeap) |
|
} |
|
heap.Push(&bkHeap, el) |
|
} |
|
} |
|
sort.Sort(bottomk) |
|
return Vector(bottomk) |
|
} |
|
|
|
// === drop_common_labels(node ExprVector) Vector === |
|
func funcDropCommonLabels(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
if len(vector) < 1 { |
|
return Vector{} |
|
} |
|
common := clientmodel.LabelSet{} |
|
for k, v := range vector[0].Metric.Metric { |
|
// TODO(julius): Should we also drop common metric names? |
|
if k == clientmodel.MetricNameLabel { |
|
continue |
|
} |
|
common[k] = v |
|
} |
|
|
|
for _, el := range vector[1:] { |
|
for k, v := range common { |
|
if el.Metric.Metric[k] != v { |
|
// Deletion of map entries while iterating over them is safe. |
|
// From http://golang.org/ref/spec#For_statements: |
|
// "If map entries that have not yet been reached are deleted during |
|
// iteration, the corresponding iteration values will not be produced." |
|
delete(common, k) |
|
} |
|
} |
|
} |
|
|
|
for _, el := range vector { |
|
for k := range el.Metric.Metric { |
|
if _, ok := common[k]; ok { |
|
el.Metric.Delete(k) |
|
} |
|
} |
|
} |
|
return vector |
|
} |
|
|
|
// === round(vector ExprVector, toNearest=1 Scalar) Vector === |
|
func funcRound(ev *evaluator, args Expressions) Value { |
|
// round returns a number rounded to toNearest. |
|
// Ties are solved by rounding up. |
|
toNearest := float64(1) |
|
if len(args) >= 2 { |
|
toNearest = ev.evalFloat(args[1]) |
|
} |
|
// Invert as it seems to cause fewer floating point accuracy issues. |
|
toNearestInverse := 1.0 / toNearest |
|
|
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse) |
|
} |
|
return vector |
|
} |
|
|
|
// === scalar(node ExprVector) Scalar === |
|
func funcScalar(ev *evaluator, args Expressions) Value { |
|
v := ev.evalVector(args[0]) |
|
if len(v) != 1 { |
|
return &Scalar{clientmodel.SampleValue(math.NaN()), ev.Timestamp} |
|
} |
|
return &Scalar{clientmodel.SampleValue(v[0].Value), ev.Timestamp} |
|
} |
|
|
|
// === count_scalar(vector ExprVector) model.SampleValue === |
|
func funcCountScalar(ev *evaluator, args Expressions) Value { |
|
return &Scalar{ |
|
Value: clientmodel.SampleValue(len(ev.evalVector(args[0]))), |
|
Timestamp: ev.Timestamp, |
|
} |
|
} |
|
|
|
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func(metric.Values) clientmodel.SampleValue) Value { |
|
matrix := ev.evalMatrix(args[0]) |
|
resultVector := Vector{} |
|
|
|
for _, el := range matrix { |
|
if len(el.Values) == 0 { |
|
continue |
|
} |
|
|
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
resultVector = append(resultVector, &Sample{ |
|
Metric: el.Metric, |
|
Value: aggrFn(el.Values), |
|
Timestamp: ev.Timestamp, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === avg_over_time(matrix ExprMatrix) Vector === |
|
func funcAvgOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue { |
|
var sum clientmodel.SampleValue |
|
for _, v := range values { |
|
sum += v.Value |
|
} |
|
return sum / clientmodel.SampleValue(len(values)) |
|
}) |
|
} |
|
|
|
// === count_over_time(matrix ExprMatrix) Vector === |
|
func funcCountOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue { |
|
return clientmodel.SampleValue(len(values)) |
|
}) |
|
} |
|
|
|
// === floor(vector ExprVector) Vector === |
|
func funcFloor(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === max_over_time(matrix ExprMatrix) Vector === |
|
func funcMaxOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue { |
|
max := math.Inf(-1) |
|
for _, v := range values { |
|
max = math.Max(max, float64(v.Value)) |
|
} |
|
return clientmodel.SampleValue(max) |
|
}) |
|
} |
|
|
|
// === min_over_time(matrix ExprMatrix) Vector === |
|
func funcMinOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue { |
|
min := math.Inf(1) |
|
for _, v := range values { |
|
min = math.Min(min, float64(v.Value)) |
|
} |
|
return clientmodel.SampleValue(min) |
|
}) |
|
} |
|
|
|
// === sum_over_time(matrix ExprMatrix) Vector === |
|
func funcSumOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue { |
|
var sum clientmodel.SampleValue |
|
for _, v := range values { |
|
sum += v.Value |
|
} |
|
return sum |
|
}) |
|
} |
|
|
|
// === abs(vector ExprVector) Vector === |
|
func funcAbs(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === absent(vector ExprVector) Vector === |
|
func funcAbsent(ev *evaluator, args Expressions) Value { |
|
if len(ev.evalVector(args[0])) > 0 { |
|
return Vector{} |
|
} |
|
m := clientmodel.Metric{} |
|
if vs, ok := args[0].(*VectorSelector); ok { |
|
for _, matcher := range vs.LabelMatchers { |
|
if matcher.Type == metric.Equal && matcher.Name != clientmodel.MetricNameLabel { |
|
m[matcher.Name] = matcher.Value |
|
} |
|
} |
|
} |
|
return Vector{ |
|
&Sample{ |
|
Metric: clientmodel.COWMetric{ |
|
Metric: m, |
|
Copied: true, |
|
}, |
|
Value: 1, |
|
Timestamp: ev.Timestamp, |
|
}, |
|
} |
|
} |
|
|
|
// === ceil(vector ExprVector) Vector === |
|
func funcCeil(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Ceil(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === exp(vector ExprVector) Vector === |
|
func funcExp(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Exp(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === sqrt(vector VectorNode) Vector === |
|
func funcSqrt(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Sqrt(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === ln(vector ExprVector) Vector === |
|
func funcLn(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Log(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === log2(vector ExprVector) Vector === |
|
func funcLog2(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Log2(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === log10(vector ExprVector) Vector === |
|
func funcLog10(ev *evaluator, args Expressions) Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Log10(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === deriv(node ExprMatrix) Vector === |
|
func funcDeriv(ev *evaluator, args Expressions) Value { |
|
resultVector := Vector{} |
|
matrix := ev.evalMatrix(args[0]) |
|
|
|
for _, samples := range matrix { |
|
// No sense in trying to compute a derivative without at least two points. |
|
// Drop this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
|
|
// Least squares. |
|
n := clientmodel.SampleValue(0) |
|
sumY := clientmodel.SampleValue(0) |
|
sumX := clientmodel.SampleValue(0) |
|
sumXY := clientmodel.SampleValue(0) |
|
sumX2 := clientmodel.SampleValue(0) |
|
for _, sample := range samples.Values { |
|
x := clientmodel.SampleValue(sample.Timestamp.UnixNano() / 1e9) |
|
n += 1.0 |
|
sumY += sample.Value |
|
sumX += x |
|
sumXY += x * sample.Value |
|
sumX2 += x * x |
|
} |
|
numerator := sumXY - sumX*sumY/n |
|
denominator := sumX2 - (sumX*sumX)/n |
|
|
|
resultValue := numerator / denominator |
|
|
|
resultSample := &Sample{ |
|
Metric: samples.Metric, |
|
Value: resultValue, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultSample.Metric.Delete(clientmodel.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === histogram_quantile(k ExprScalar, vector ExprVector) Vector === |
|
func funcHistogramQuantile(ev *evaluator, args Expressions) Value { |
|
q := clientmodel.SampleValue(ev.evalFloat(args[0])) |
|
inVec := ev.evalVector(args[1]) |
|
|
|
outVec := Vector{} |
|
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} |
|
for _, el := range inVec { |
|
upperBound, err := strconv.ParseFloat( |
|
string(el.Metric.Metric[clientmodel.BucketLabel]), 64, |
|
) |
|
if err != nil { |
|
// Oops, no bucket label or malformed label value. Skip. |
|
// TODO(beorn7): Issue a warning somehow. |
|
continue |
|
} |
|
signature := clientmodel.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) |
|
mb, ok := signatureToMetricWithBuckets[signature] |
|
if !ok { |
|
el.Metric.Delete(clientmodel.BucketLabel) |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
mb = &metricWithBuckets{el.Metric, nil} |
|
signatureToMetricWithBuckets[signature] = mb |
|
} |
|
mb.buckets = append(mb.buckets, bucket{upperBound, el.Value}) |
|
} |
|
|
|
for _, mb := range signatureToMetricWithBuckets { |
|
outVec = append(outVec, &Sample{ |
|
Metric: mb.metric, |
|
Value: clientmodel.SampleValue(quantile(q, mb.buckets)), |
|
Timestamp: ev.Timestamp, |
|
}) |
|
} |
|
|
|
return outVec |
|
} |
|
|
|
var functions = map[string]*Function{ |
|
"abs": { |
|
Name: "abs", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcAbs, |
|
}, |
|
"absent": { |
|
Name: "absent", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcAbsent, |
|
}, |
|
"avg_over_time": { |
|
Name: "avg_over_time", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcAvgOverTime, |
|
}, |
|
"bottomk": { |
|
Name: "bottomk", |
|
ArgTypes: []ExprType{ExprScalar, ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcBottomk, |
|
}, |
|
"ceil": { |
|
Name: "ceil", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcCeil, |
|
}, |
|
"count_over_time": { |
|
Name: "count_over_time", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcCountOverTime, |
|
}, |
|
"count_scalar": { |
|
Name: "count_scalar", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprScalar, |
|
Call: funcCountScalar, |
|
}, |
|
"delta": { |
|
Name: "delta", |
|
ArgTypes: []ExprType{ExprMatrix, ExprScalar}, |
|
OptionalArgs: 1, // The 2nd argument is deprecated. |
|
ReturnType: ExprVector, |
|
Call: funcDelta, |
|
}, |
|
"deriv": { |
|
Name: "deriv", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcDeriv, |
|
}, |
|
"drop_common_labels": { |
|
Name: "drop_common_labels", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcDropCommonLabels, |
|
}, |
|
"exp": { |
|
Name: "exp", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcExp, |
|
}, |
|
"floor": { |
|
Name: "floor", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcFloor, |
|
}, |
|
"histogram_quantile": { |
|
Name: "histogram_quantile", |
|
ArgTypes: []ExprType{ExprScalar, ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcHistogramQuantile, |
|
}, |
|
"ln": { |
|
Name: "ln", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcLn, |
|
}, |
|
"log10": { |
|
Name: "log10", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcLog10, |
|
}, |
|
"log2": { |
|
Name: "log2", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcLog2, |
|
}, |
|
"max_over_time": { |
|
Name: "max_over_time", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcMaxOverTime, |
|
}, |
|
"min_over_time": { |
|
Name: "min_over_time", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcMinOverTime, |
|
}, |
|
"rate": { |
|
Name: "rate", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcRate, |
|
}, |
|
"round": { |
|
Name: "round", |
|
ArgTypes: []ExprType{ExprVector, ExprScalar}, |
|
OptionalArgs: 1, |
|
ReturnType: ExprVector, |
|
Call: funcRound, |
|
}, |
|
"scalar": { |
|
Name: "scalar", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprScalar, |
|
Call: funcScalar, |
|
}, |
|
"sort": { |
|
Name: "sort", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcSort, |
|
}, |
|
"sort_desc": { |
|
Name: "sort_desc", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcSortDesc, |
|
}, |
|
"sqrt": { |
|
Name: "sqrt", |
|
ArgTypes: []ExprType{ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcSqrt, |
|
}, |
|
"sum_over_time": { |
|
Name: "sum_over_time", |
|
ArgTypes: []ExprType{ExprMatrix}, |
|
ReturnType: ExprVector, |
|
Call: funcSumOverTime, |
|
}, |
|
"time": { |
|
Name: "time", |
|
ArgTypes: []ExprType{}, |
|
ReturnType: ExprScalar, |
|
Call: funcTime, |
|
}, |
|
"topk": { |
|
Name: "topk", |
|
ArgTypes: []ExprType{ExprScalar, ExprVector}, |
|
ReturnType: ExprVector, |
|
Call: funcTopk, |
|
}, |
|
} |
|
|
|
// getFunction returns a predefined Function object for the given name. |
|
func getFunction(name string) (*Function, bool) { |
|
function, ok := functions[name] |
|
return function, ok |
|
} |
|
|
|
type vectorByValueHeap Vector |
|
|
|
func (s vectorByValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool { |
|
if math.IsNaN(float64(s[i].Value)) { |
|
return true |
|
} |
|
return s[i].Value < s[j].Value |
|
} |
|
|
|
func (s vectorByValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) { |
|
*s = append(*s, x.(*Sample)) |
|
} |
|
|
|
func (s *vectorByValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
} |
|
|
|
type reverseHeap struct { |
|
heap.Interface |
|
} |
|
|
|
func (s reverseHeap) Less(i, j int) bool { |
|
return s.Interface.Less(j, i) |
|
}
|
|
|