mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1712 lines
55 KiB
1712 lines
55 KiB
// Copyright 2015 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package promql |
|
|
|
import ( |
|
"fmt" |
|
"math" |
|
"sort" |
|
"strconv" |
|
"strings" |
|
"time" |
|
|
|
"github.com/grafana/regexp" |
|
"github.com/prometheus/common/model" |
|
"golang.org/x/exp/slices" |
|
|
|
"github.com/prometheus/prometheus/model/histogram" |
|
"github.com/prometheus/prometheus/model/labels" |
|
"github.com/prometheus/prometheus/promql/parser" |
|
"github.com/prometheus/prometheus/promql/parser/posrange" |
|
"github.com/prometheus/prometheus/util/annotations" |
|
) |
|
|
|
// FunctionCall is the type of a PromQL function implementation |
|
// |
|
// vals is a list of the evaluated arguments for the function call. |
|
// |
|
// For range vectors it will be a Matrix with one series, instant vectors a |
|
// Vector, scalars a Vector with one series whose value is the scalar |
|
// value,and nil for strings. |
|
// |
|
// args are the original arguments to the function, where you can access |
|
// matrixSelectors, vectorSelectors, and StringLiterals. |
|
// |
|
// enh.Out is a pre-allocated empty vector that you may use to accumulate |
|
// output before returning it. The vectors in vals should not be returned.a |
|
// |
|
// Range vector functions need only return a vector with the right value, |
|
// the metric and timestamp are not needed. |
|
// |
|
// Instant vector functions need only return a vector with the right values and |
|
// metrics, the timestamp are not needed. |
|
// |
|
// Scalar results should be returned as the value of a sample in a Vector. |
|
type FunctionCall func(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) |
|
|
|
// === time() float64 === |
|
func funcTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return Vector{Sample{ |
|
F: float64(enh.Ts) / 1000, |
|
}}, nil |
|
} |
|
|
|
// extrapolatedRate is a utility function for rate/increase/delta. |
|
// It calculates the rate (allowing for counter resets if isCounter is true), |
|
// extrapolates if the first/last sample is close to the boundary, and returns |
|
// the result as either per-second (if isRate is true) or overall. |
|
func extrapolatedRate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper, isCounter, isRate bool) (Vector, annotations.Annotations) { |
|
ms := args[0].(*parser.MatrixSelector) |
|
vs := ms.VectorSelector.(*parser.VectorSelector) |
|
var ( |
|
samples = vals[0].(Matrix)[0] |
|
rangeStart = enh.Ts - durationMilliseconds(ms.Range+vs.Offset) |
|
rangeEnd = enh.Ts - durationMilliseconds(vs.Offset) |
|
resultFloat float64 |
|
resultHistogram *histogram.FloatHistogram |
|
firstT, lastT int64 |
|
numSamplesMinusOne int |
|
annos annotations.Annotations |
|
) |
|
|
|
// We need either at least two Histograms and no Floats, or at least two |
|
// Floats and no Histograms to calculate a rate. Otherwise, drop this |
|
// Vector element. |
|
metricName := samples.Metric.Get(labels.MetricName) |
|
if len(samples.Histograms) > 0 && len(samples.Floats) > 0 { |
|
return enh.Out, annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange())) |
|
} |
|
|
|
switch { |
|
case len(samples.Histograms) > 1: |
|
numSamplesMinusOne = len(samples.Histograms) - 1 |
|
firstT = samples.Histograms[0].T |
|
lastT = samples.Histograms[numSamplesMinusOne].T |
|
var newAnnos annotations.Annotations |
|
resultHistogram, newAnnos = histogramRate(samples.Histograms, isCounter, metricName, args[0].PositionRange()) |
|
if resultHistogram == nil { |
|
// The histograms are not compatible with each other. |
|
return enh.Out, annos.Merge(newAnnos) |
|
} |
|
case len(samples.Floats) > 1: |
|
numSamplesMinusOne = len(samples.Floats) - 1 |
|
firstT = samples.Floats[0].T |
|
lastT = samples.Floats[numSamplesMinusOne].T |
|
resultFloat = samples.Floats[numSamplesMinusOne].F - samples.Floats[0].F |
|
if !isCounter { |
|
break |
|
} |
|
// Handle counter resets: |
|
prevValue := samples.Floats[0].F |
|
for _, currPoint := range samples.Floats[1:] { |
|
if currPoint.F < prevValue { |
|
resultFloat += prevValue |
|
} |
|
prevValue = currPoint.F |
|
} |
|
default: |
|
// TODO: add RangeTooShortWarning |
|
return enh.Out, annos |
|
} |
|
|
|
// Duration between first/last samples and boundary of range. |
|
durationToStart := float64(firstT-rangeStart) / 1000 |
|
durationToEnd := float64(rangeEnd-lastT) / 1000 |
|
|
|
sampledInterval := float64(lastT-firstT) / 1000 |
|
averageDurationBetweenSamples := sampledInterval / float64(numSamplesMinusOne) |
|
|
|
// TODO(beorn7): Do this for histograms, too. |
|
if isCounter && resultFloat > 0 && len(samples.Floats) > 0 && samples.Floats[0].F >= 0 { |
|
// Counters cannot be negative. If we have any slope at all |
|
// (i.e. resultFloat went up), we can extrapolate the zero point |
|
// of the counter. If the duration to the zero point is shorter |
|
// than the durationToStart, we take the zero point as the start |
|
// of the series, thereby avoiding extrapolation to negative |
|
// counter values. |
|
durationToZero := sampledInterval * (samples.Floats[0].F / resultFloat) |
|
if durationToZero < durationToStart { |
|
durationToStart = durationToZero |
|
} |
|
} |
|
|
|
// If the first/last samples are close to the boundaries of the range, |
|
// extrapolate the result. This is as we expect that another sample |
|
// will exist given the spacing between samples we've seen thus far, |
|
// with an allowance for noise. |
|
extrapolationThreshold := averageDurationBetweenSamples * 1.1 |
|
extrapolateToInterval := sampledInterval |
|
|
|
if durationToStart < extrapolationThreshold { |
|
extrapolateToInterval += durationToStart |
|
} else { |
|
extrapolateToInterval += averageDurationBetweenSamples / 2 |
|
} |
|
if durationToEnd < extrapolationThreshold { |
|
extrapolateToInterval += durationToEnd |
|
} else { |
|
extrapolateToInterval += averageDurationBetweenSamples / 2 |
|
} |
|
factor := extrapolateToInterval / sampledInterval |
|
if isRate { |
|
factor /= ms.Range.Seconds() |
|
} |
|
if resultHistogram == nil { |
|
resultFloat *= factor |
|
} else { |
|
resultHistogram.Mul(factor) |
|
} |
|
|
|
return append(enh.Out, Sample{F: resultFloat, H: resultHistogram}), annos |
|
} |
|
|
|
// histogramRate is a helper function for extrapolatedRate. It requires |
|
// points[0] to be a histogram. It returns nil if any other Point in points is |
|
// not a histogram, and a warning wrapped in an annotation in that case. |
|
// Otherwise, it returns the calculated histogram and an empty annotation. |
|
func histogramRate(points []HPoint, isCounter bool, metricName string, pos posrange.PositionRange) (*histogram.FloatHistogram, annotations.Annotations) { |
|
prev := points[0].H |
|
last := points[len(points)-1].H |
|
if last == nil { |
|
return nil, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, pos)) |
|
} |
|
minSchema := prev.Schema |
|
if last.Schema < minSchema { |
|
minSchema = last.Schema |
|
} |
|
|
|
// First iteration to find out two things: |
|
// - What's the smallest relevant schema? |
|
// - Are all data points histograms? |
|
// TODO(beorn7): Find a way to check that earlier, e.g. by handing in a |
|
// []FloatPoint and a []HistogramPoint separately. |
|
for _, currPoint := range points[1 : len(points)-1] { |
|
curr := currPoint.H |
|
if curr == nil { |
|
return nil, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, pos)) |
|
} |
|
// TODO(trevorwhitney): Check if isCounter is consistent with curr.CounterResetHint. |
|
if !isCounter { |
|
continue |
|
} |
|
if curr.Schema < minSchema { |
|
minSchema = curr.Schema |
|
} |
|
} |
|
|
|
h := last.CopyToSchema(minSchema) |
|
h.Sub(prev) |
|
|
|
if isCounter { |
|
// Second iteration to deal with counter resets. |
|
for _, currPoint := range points[1:] { |
|
curr := currPoint.H |
|
if curr.DetectReset(prev) { |
|
h.Add(prev) |
|
} |
|
prev = curr |
|
} |
|
} |
|
|
|
h.CounterResetHint = histogram.GaugeType |
|
return h.Compact(0), nil |
|
} |
|
|
|
// === delta(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcDelta(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return extrapolatedRate(vals, args, enh, false, false) |
|
} |
|
|
|
// === rate(node parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcRate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return extrapolatedRate(vals, args, enh, true, true) |
|
} |
|
|
|
// === increase(node parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcIncrease(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return extrapolatedRate(vals, args, enh, true, false) |
|
} |
|
|
|
// === irate(node parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcIrate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return instantValue(vals, enh.Out, true) |
|
} |
|
|
|
// === idelta(node model.ValMatrix) (Vector, Annotations) === |
|
func funcIdelta(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return instantValue(vals, enh.Out, false) |
|
} |
|
|
|
func instantValue(vals []parser.Value, out Vector, isRate bool) (Vector, annotations.Annotations) { |
|
samples := vals[0].(Matrix)[0] |
|
// No sense in trying to compute a rate without at least two points. Drop |
|
// this Vector element. |
|
// TODO: add RangeTooShortWarning |
|
if len(samples.Floats) < 2 { |
|
return out, nil |
|
} |
|
|
|
lastSample := samples.Floats[len(samples.Floats)-1] |
|
previousSample := samples.Floats[len(samples.Floats)-2] |
|
|
|
var resultValue float64 |
|
if isRate && lastSample.F < previousSample.F { |
|
// Counter reset. |
|
resultValue = lastSample.F |
|
} else { |
|
resultValue = lastSample.F - previousSample.F |
|
} |
|
|
|
sampledInterval := lastSample.T - previousSample.T |
|
if sampledInterval == 0 { |
|
// Avoid dividing by 0. |
|
return out, nil |
|
} |
|
|
|
if isRate { |
|
// Convert to per-second. |
|
resultValue /= float64(sampledInterval) / 1000 |
|
} |
|
|
|
return append(out, Sample{F: resultValue}), nil |
|
} |
|
|
|
// Calculate the trend value at the given index i in raw data d. |
|
// This is somewhat analogous to the slope of the trend at the given index. |
|
// The argument "tf" is the trend factor. |
|
// The argument "s0" is the computed smoothed value. |
|
// The argument "s1" is the computed trend factor. |
|
// The argument "b" is the raw input value. |
|
func calcTrendValue(i int, tf, s0, s1, b float64) float64 { |
|
if i == 0 { |
|
return b |
|
} |
|
|
|
x := tf * (s1 - s0) |
|
y := (1 - tf) * b |
|
|
|
return x + y |
|
} |
|
|
|
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. |
|
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current |
|
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects |
|
// how trends in historical data will affect the current data. A higher trend factor increases the influence. |
|
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". |
|
func funcHoltWinters(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
samples := vals[0].(Matrix)[0] |
|
|
|
// The smoothing factor argument. |
|
sf := vals[1].(Vector)[0].F |
|
|
|
// The trend factor argument. |
|
tf := vals[2].(Vector)[0].F |
|
|
|
// Check that the input parameters are valid. |
|
if sf <= 0 || sf >= 1 { |
|
panic(fmt.Errorf("invalid smoothing factor. Expected: 0 < sf < 1, got: %f", sf)) |
|
} |
|
if tf <= 0 || tf >= 1 { |
|
panic(fmt.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf)) |
|
} |
|
|
|
l := len(samples.Floats) |
|
|
|
// Can't do the smoothing operation with less than two points. |
|
if l < 2 { |
|
return enh.Out, nil |
|
} |
|
|
|
var s0, s1, b float64 |
|
// Set initial values. |
|
s1 = samples.Floats[0].F |
|
b = samples.Floats[1].F - samples.Floats[0].F |
|
|
|
// Run the smoothing operation. |
|
var x, y float64 |
|
for i := 1; i < l; i++ { |
|
|
|
// Scale the raw value against the smoothing factor. |
|
x = sf * samples.Floats[i].F |
|
|
|
// Scale the last smoothed value with the trend at this point. |
|
b = calcTrendValue(i-1, tf, s0, s1, b) |
|
y = (1 - sf) * (s1 + b) |
|
|
|
s0, s1 = s1, x+y |
|
} |
|
|
|
return append(enh.Out, Sample{F: s1}), nil |
|
} |
|
|
|
// === sort(node parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcSort(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
// NaN should sort to the bottom, so take descending sort with NaN first and |
|
// reverse it. |
|
byValueSorter := vectorByReverseValueHeap(vals[0].(Vector)) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return Vector(byValueSorter), nil |
|
} |
|
|
|
// === sortDesc(node parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcSortDesc(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
// NaN should sort to the bottom, so take ascending sort with NaN first and |
|
// reverse it. |
|
byValueSorter := vectorByValueHeap(vals[0].(Vector)) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return Vector(byValueSorter), nil |
|
} |
|
|
|
// === sort_by_label(vector parser.ValueTypeVector, label parser.ValueTypeString...) (Vector, Annotations) === |
|
func funcSortByLabel(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
// In case the labels are the same, NaN should sort to the bottom, so take |
|
// ascending sort with NaN first and reverse it. |
|
var anno annotations.Annotations |
|
vals[0], anno = funcSort(vals, args, enh) |
|
labels := stringSliceFromArgs(args[1:]) |
|
slices.SortFunc(vals[0].(Vector), func(a, b Sample) int { |
|
// Iterate over each given label |
|
for _, label := range labels { |
|
lv1 := a.Metric.Get(label) |
|
lv2 := b.Metric.Get(label) |
|
// 0 if a == b, -1 if a < b, and +1 if a > b. |
|
switch strings.Compare(lv1, lv2) { |
|
case -1: |
|
return -1 |
|
case +1: |
|
return +1 |
|
default: |
|
continue |
|
} |
|
} |
|
|
|
return 0 |
|
}) |
|
|
|
return vals[0].(Vector), anno |
|
} |
|
|
|
// === sort_by_label_desc(vector parser.ValueTypeVector, label parser.ValueTypeString...) (Vector, Annotations) === |
|
func funcSortByLabelDesc(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
// In case the labels are the same, NaN should sort to the bottom, so take |
|
// ascending sort with NaN first and reverse it. |
|
var anno annotations.Annotations |
|
vals[0], anno = funcSortDesc(vals, args, enh) |
|
labels := stringSliceFromArgs(args[1:]) |
|
slices.SortFunc(vals[0].(Vector), func(a, b Sample) int { |
|
// Iterate over each given label |
|
for _, label := range labels { |
|
lv1 := a.Metric.Get(label) |
|
lv2 := b.Metric.Get(label) |
|
// If label values are the same, continue to the next label |
|
if lv1 == lv2 { |
|
continue |
|
} |
|
// 0 if a == b, -1 if a < b, and +1 if a > b. |
|
switch strings.Compare(lv1, lv2) { |
|
case -1: |
|
return +1 |
|
case +1: |
|
return -1 |
|
default: |
|
continue |
|
} |
|
} |
|
|
|
return 0 |
|
}) |
|
|
|
return vals[0].(Vector), anno |
|
} |
|
|
|
// === clamp(Vector parser.ValueTypeVector, min, max Scalar) (Vector, Annotations) === |
|
func funcClamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
vec := vals[0].(Vector) |
|
min := vals[1].(Vector)[0].F |
|
max := vals[2].(Vector)[0].F |
|
if max < min { |
|
return enh.Out, nil |
|
} |
|
for _, el := range vec { |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: math.Max(min, math.Min(max, el.F)), |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === clamp_max(Vector parser.ValueTypeVector, max Scalar) (Vector, Annotations) === |
|
func funcClampMax(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
vec := vals[0].(Vector) |
|
max := vals[1].(Vector)[0].F |
|
for _, el := range vec { |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: math.Min(max, el.F), |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === clamp_min(Vector parser.ValueTypeVector, min Scalar) (Vector, Annotations) === |
|
func funcClampMin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
vec := vals[0].(Vector) |
|
min := vals[1].(Vector)[0].F |
|
for _, el := range vec { |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: math.Max(min, el.F), |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === round(Vector parser.ValueTypeVector, toNearest=1 Scalar) (Vector, Annotations) === |
|
func funcRound(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
vec := vals[0].(Vector) |
|
// round returns a number rounded to toNearest. |
|
// Ties are solved by rounding up. |
|
toNearest := float64(1) |
|
if len(args) >= 2 { |
|
toNearest = vals[1].(Vector)[0].F |
|
} |
|
// Invert as it seems to cause fewer floating point accuracy issues. |
|
toNearestInverse := 1.0 / toNearest |
|
|
|
for _, el := range vec { |
|
f := math.Floor(el.F*toNearestInverse+0.5) / toNearestInverse |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: f, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === Scalar(node parser.ValueTypeVector) Scalar === |
|
func funcScalar(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
v := vals[0].(Vector) |
|
if len(v) != 1 { |
|
return append(enh.Out, Sample{F: math.NaN()}), nil |
|
} |
|
return append(enh.Out, Sample{F: v[0].F}), nil |
|
} |
|
|
|
func aggrOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) float64) Vector { |
|
el := vals[0].(Matrix)[0] |
|
|
|
return append(enh.Out, Sample{F: aggrFn(el)}) |
|
} |
|
|
|
func aggrHistOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) *histogram.FloatHistogram) Vector { |
|
el := vals[0].(Matrix)[0] |
|
|
|
return append(enh.Out, Sample{H: aggrFn(el)}) |
|
} |
|
|
|
// === avg_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
firstSeries := vals[0].(Matrix)[0] |
|
if len(firstSeries.Floats) > 0 && len(firstSeries.Histograms) > 0 { |
|
metricName := firstSeries.Metric.Get(labels.MetricName) |
|
return enh.Out, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange())) |
|
} |
|
if len(firstSeries.Floats) == 0 { |
|
// The passed values only contain histograms. |
|
return aggrHistOverTime(vals, enh, func(s Series) *histogram.FloatHistogram { |
|
count := 1 |
|
mean := s.Histograms[0].H.Copy() |
|
for _, h := range s.Histograms[1:] { |
|
count++ |
|
left := h.H.Copy().Div(float64(count)) |
|
right := mean.Copy().Div(float64(count)) |
|
// The histogram being added/subtracted must have |
|
// an equal or larger schema. |
|
if h.H.Schema >= mean.Schema { |
|
toAdd := right.Mul(-1).Add(left) |
|
mean.Add(toAdd) |
|
} else { |
|
toAdd := left.Sub(right) |
|
mean = toAdd.Add(mean) |
|
} |
|
} |
|
return mean |
|
}), nil |
|
} |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
var mean, count, c float64 |
|
for _, f := range s.Floats { |
|
count++ |
|
if math.IsInf(mean, 0) { |
|
if math.IsInf(f.F, 0) && (mean > 0) == (f.F > 0) { |
|
// The `mean` and `f.F` values are `Inf` of the same sign. They |
|
// can't be subtracted, but the value of `mean` is correct |
|
// already. |
|
continue |
|
} |
|
if !math.IsInf(f.F, 0) && !math.IsNaN(f.F) { |
|
// At this stage, the mean is an infinite. If the added |
|
// value is neither an Inf or a Nan, we can keep that mean |
|
// value. |
|
// This is required because our calculation below removes |
|
// the mean value, which would look like Inf += x - Inf and |
|
// end up as a NaN. |
|
continue |
|
} |
|
} |
|
mean, c = kahanSumInc(f.F/count-mean/count, mean, c) |
|
} |
|
|
|
if math.IsInf(mean, 0) { |
|
return mean |
|
} |
|
return mean + c |
|
}), nil |
|
} |
|
|
|
// === count_over_time(Matrix parser.ValueTypeMatrix) (Vector, Notes) === |
|
func funcCountOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
return float64(len(s.Floats) + len(s.Histograms)) |
|
}), nil |
|
} |
|
|
|
// === last_over_time(Matrix parser.ValueTypeMatrix) (Vector, Notes) === |
|
func funcLastOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
el := vals[0].(Matrix)[0] |
|
|
|
var f FPoint |
|
if len(el.Floats) > 0 { |
|
f = el.Floats[len(el.Floats)-1] |
|
} |
|
|
|
var h HPoint |
|
if len(el.Histograms) > 0 { |
|
h = el.Histograms[len(el.Histograms)-1] |
|
} |
|
|
|
if h.H == nil || h.T < f.T { |
|
return append(enh.Out, Sample{ |
|
Metric: el.Metric, |
|
F: f.F, |
|
}), nil |
|
} |
|
return append(enh.Out, Sample{ |
|
Metric: el.Metric, |
|
H: h.H, |
|
}), nil |
|
} |
|
|
|
// === max_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcMaxOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
if len(vals[0].(Matrix)[0].Floats) == 0 { |
|
// TODO(beorn7): The passed values only contain |
|
// histograms. max_over_time ignores histograms for now. If |
|
// there are only histograms, we have to return without adding |
|
// anything to enh.Out. |
|
return enh.Out, nil |
|
} |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
max := s.Floats[0].F |
|
for _, f := range s.Floats { |
|
if f.F > max || math.IsNaN(max) { |
|
max = f.F |
|
} |
|
} |
|
return max |
|
}), nil |
|
} |
|
|
|
// === min_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcMinOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
if len(vals[0].(Matrix)[0].Floats) == 0 { |
|
// TODO(beorn7): The passed values only contain |
|
// histograms. min_over_time ignores histograms for now. If |
|
// there are only histograms, we have to return without adding |
|
// anything to enh.Out. |
|
return enh.Out, nil |
|
} |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
min := s.Floats[0].F |
|
for _, f := range s.Floats { |
|
if f.F < min || math.IsNaN(min) { |
|
min = f.F |
|
} |
|
} |
|
return min |
|
}), nil |
|
} |
|
|
|
// === sum_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
firstSeries := vals[0].(Matrix)[0] |
|
if len(firstSeries.Floats) > 0 && len(firstSeries.Histograms) > 0 { |
|
metricName := firstSeries.Metric.Get(labels.MetricName) |
|
return enh.Out, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange())) |
|
} |
|
if len(firstSeries.Floats) == 0 { |
|
// The passed values only contain histograms. |
|
return aggrHistOverTime(vals, enh, func(s Series) *histogram.FloatHistogram { |
|
sum := s.Histograms[0].H.Copy() |
|
for _, h := range s.Histograms[1:] { |
|
// The histogram being added must have |
|
// an equal or larger schema. |
|
if h.H.Schema >= sum.Schema { |
|
sum.Add(h.H) |
|
} else { |
|
sum = h.H.Copy().Add(sum) |
|
} |
|
} |
|
return sum |
|
}), nil |
|
} |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
var sum, c float64 |
|
for _, f := range s.Floats { |
|
sum, c = kahanSumInc(f.F, sum, c) |
|
} |
|
if math.IsInf(sum, 0) { |
|
return sum |
|
} |
|
return sum + c |
|
}), nil |
|
} |
|
|
|
// === quantile_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcQuantileOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
q := vals[0].(Vector)[0].F |
|
el := vals[1].(Matrix)[0] |
|
if len(el.Floats) == 0 { |
|
// TODO(beorn7): The passed values only contain |
|
// histograms. quantile_over_time ignores histograms for now. If |
|
// there are only histograms, we have to return without adding |
|
// anything to enh.Out. |
|
return enh.Out, nil |
|
} |
|
|
|
var annos annotations.Annotations |
|
if math.IsNaN(q) || q < 0 || q > 1 { |
|
annos.Add(annotations.NewInvalidQuantileWarning(q, args[0].PositionRange())) |
|
} |
|
|
|
values := make(vectorByValueHeap, 0, len(el.Floats)) |
|
for _, f := range el.Floats { |
|
values = append(values, Sample{F: f.F}) |
|
} |
|
return append(enh.Out, Sample{F: quantile(q, values)}), annos |
|
} |
|
|
|
// === stddev_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcStddevOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
if len(vals[0].(Matrix)[0].Floats) == 0 { |
|
// TODO(beorn7): The passed values only contain |
|
// histograms. stddev_over_time ignores histograms for now. If |
|
// there are only histograms, we have to return without adding |
|
// anything to enh.Out. |
|
return enh.Out, nil |
|
} |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
var count float64 |
|
var mean, cMean float64 |
|
var aux, cAux float64 |
|
for _, f := range s.Floats { |
|
count++ |
|
delta := f.F - (mean + cMean) |
|
mean, cMean = kahanSumInc(delta/count, mean, cMean) |
|
aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux) |
|
} |
|
return math.Sqrt((aux + cAux) / count) |
|
}), nil |
|
} |
|
|
|
// === stdvar_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcStdvarOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
if len(vals[0].(Matrix)[0].Floats) == 0 { |
|
// TODO(beorn7): The passed values only contain |
|
// histograms. stdvar_over_time ignores histograms for now. If |
|
// there are only histograms, we have to return without adding |
|
// anything to enh.Out. |
|
return enh.Out, nil |
|
} |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
var count float64 |
|
var mean, cMean float64 |
|
var aux, cAux float64 |
|
for _, f := range s.Floats { |
|
count++ |
|
delta := f.F - (mean + cMean) |
|
mean, cMean = kahanSumInc(delta/count, mean, cMean) |
|
aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux) |
|
} |
|
return (aux + cAux) / count |
|
}), nil |
|
} |
|
|
|
// === absent(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAbsent(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
if len(vals[0].(Vector)) > 0 { |
|
return enh.Out, nil |
|
} |
|
return append(enh.Out, |
|
Sample{ |
|
Metric: createLabelsForAbsentFunction(args[0]), |
|
F: 1, |
|
}), nil |
|
} |
|
|
|
// === absent_over_time(Vector parser.ValueTypeMatrix) (Vector, Annotations) === |
|
// As this function has a matrix as argument, it does not get all the Series. |
|
// This function will return 1 if the matrix has at least one element. |
|
// Due to engine optimization, this function is only called when this condition is true. |
|
// Then, the engine post-processes the results to get the expected output. |
|
func funcAbsentOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return append(enh.Out, Sample{F: 1}), nil |
|
} |
|
|
|
// === present_over_time(Vector parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcPresentOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return aggrOverTime(vals, enh, func(s Series) float64 { |
|
return 1 |
|
}), nil |
|
} |
|
|
|
func simpleFunc(vals []parser.Value, enh *EvalNodeHelper, f func(float64) float64) Vector { |
|
for _, el := range vals[0].(Vector) { |
|
if el.H == nil { // Process only float samples. |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: f(el.F), |
|
}) |
|
} |
|
} |
|
return enh.Out |
|
} |
|
|
|
// === abs(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAbs(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Abs), nil |
|
} |
|
|
|
// === ceil(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcCeil(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Ceil), nil |
|
} |
|
|
|
// === floor(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcFloor(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Floor), nil |
|
} |
|
|
|
// === exp(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcExp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Exp), nil |
|
} |
|
|
|
// === sqrt(Vector VectorNode) (Vector, Annotations) === |
|
func funcSqrt(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Sqrt), nil |
|
} |
|
|
|
// === ln(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcLn(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Log), nil |
|
} |
|
|
|
// === log2(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcLog2(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Log2), nil |
|
} |
|
|
|
// === log10(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcLog10(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Log10), nil |
|
} |
|
|
|
// === sin(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcSin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Sin), nil |
|
} |
|
|
|
// === cos(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcCos(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Cos), nil |
|
} |
|
|
|
// === tan(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcTan(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Tan), nil |
|
} |
|
|
|
// === asin(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAsin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Asin), nil |
|
} |
|
|
|
// === acos(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAcos(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Acos), nil |
|
} |
|
|
|
// === atan(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAtan(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Atan), nil |
|
} |
|
|
|
// === sinh(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcSinh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Sinh), nil |
|
} |
|
|
|
// === cosh(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcCosh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Cosh), nil |
|
} |
|
|
|
// === tanh(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcTanh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Tanh), nil |
|
} |
|
|
|
// === asinh(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAsinh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Asinh), nil |
|
} |
|
|
|
// === acosh(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAcosh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Acosh), nil |
|
} |
|
|
|
// === atanh(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcAtanh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, math.Atanh), nil |
|
} |
|
|
|
// === rad(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcRad(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, func(v float64) float64 { |
|
return v * math.Pi / 180 |
|
}), nil |
|
} |
|
|
|
// === deg(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcDeg(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, func(v float64) float64 { |
|
return v * 180 / math.Pi |
|
}), nil |
|
} |
|
|
|
// === pi() Scalar === |
|
func funcPi(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return Vector{Sample{F: math.Pi}}, nil |
|
} |
|
|
|
// === sgn(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcSgn(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return simpleFunc(vals, enh, func(v float64) float64 { |
|
switch { |
|
case v < 0: |
|
return -1 |
|
case v > 0: |
|
return 1 |
|
default: |
|
return v |
|
} |
|
}), nil |
|
} |
|
|
|
// === timestamp(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcTimestamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
vec := vals[0].(Vector) |
|
for _, el := range vec { |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: float64(el.T) / 1000, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
func kahanSum(samples []float64) float64 { |
|
var sum, c float64 |
|
|
|
for _, v := range samples { |
|
sum, c = kahanSumInc(v, sum, c) |
|
} |
|
return sum + c |
|
} |
|
|
|
func kahanSumInc(inc, sum, c float64) (newSum, newC float64) { |
|
t := sum + inc |
|
// Using Neumaier improvement, swap if next term larger than sum. |
|
if math.Abs(sum) >= math.Abs(inc) { |
|
c += (sum - t) + inc |
|
} else { |
|
c += (inc - t) + sum |
|
} |
|
return t, c |
|
} |
|
|
|
// linearRegression performs a least-square linear regression analysis on the |
|
// provided SamplePairs. It returns the slope, and the intercept value at the |
|
// provided time. |
|
func linearRegression(samples []FPoint, interceptTime int64) (slope, intercept float64) { |
|
var ( |
|
n float64 |
|
sumX, cX float64 |
|
sumY, cY float64 |
|
sumXY, cXY float64 |
|
sumX2, cX2 float64 |
|
initY float64 |
|
constY bool |
|
) |
|
initY = samples[0].F |
|
constY = true |
|
for i, sample := range samples { |
|
// Set constY to false if any new y values are encountered. |
|
if constY && i > 0 && sample.F != initY { |
|
constY = false |
|
} |
|
n += 1.0 |
|
x := float64(sample.T-interceptTime) / 1e3 |
|
sumX, cX = kahanSumInc(x, sumX, cX) |
|
sumY, cY = kahanSumInc(sample.F, sumY, cY) |
|
sumXY, cXY = kahanSumInc(x*sample.F, sumXY, cXY) |
|
sumX2, cX2 = kahanSumInc(x*x, sumX2, cX2) |
|
} |
|
if constY { |
|
if math.IsInf(initY, 0) { |
|
return math.NaN(), math.NaN() |
|
} |
|
return 0, initY |
|
} |
|
sumX += cX |
|
sumY += cY |
|
sumXY += cXY |
|
sumX2 += cX2 |
|
|
|
covXY := sumXY - sumX*sumY/n |
|
varX := sumX2 - sumX*sumX/n |
|
|
|
slope = covXY / varX |
|
intercept = sumY/n - slope*sumX/n |
|
return slope, intercept |
|
} |
|
|
|
// === deriv(node parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcDeriv(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
samples := vals[0].(Matrix)[0] |
|
|
|
// No sense in trying to compute a derivative without at least two points. |
|
// Drop this Vector element. |
|
if len(samples.Floats) < 2 { |
|
return enh.Out, nil |
|
} |
|
|
|
// We pass in an arbitrary timestamp that is near the values in use |
|
// to avoid floating point accuracy issues, see |
|
// https://github.com/prometheus/prometheus/issues/2674 |
|
slope, _ := linearRegression(samples.Floats, samples.Floats[0].T) |
|
return append(enh.Out, Sample{F: slope}), nil |
|
} |
|
|
|
// === predict_linear(node parser.ValueTypeMatrix, k parser.ValueTypeScalar) (Vector, Annotations) === |
|
func funcPredictLinear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
samples := vals[0].(Matrix)[0] |
|
duration := vals[1].(Vector)[0].F |
|
// No sense in trying to predict anything without at least two points. |
|
// Drop this Vector element. |
|
if len(samples.Floats) < 2 { |
|
return enh.Out, nil |
|
} |
|
slope, intercept := linearRegression(samples.Floats, enh.Ts) |
|
|
|
return append(enh.Out, Sample{F: slope*duration + intercept}), nil |
|
} |
|
|
|
// === histogram_count(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcHistogramCount(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
inVec := vals[0].(Vector) |
|
|
|
for _, sample := range inVec { |
|
// Skip non-histogram samples. |
|
if sample.H == nil { |
|
continue |
|
} |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(sample.Metric), |
|
F: sample.H.Count, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === histogram_sum(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcHistogramSum(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
inVec := vals[0].(Vector) |
|
|
|
for _, sample := range inVec { |
|
// Skip non-histogram samples. |
|
if sample.H == nil { |
|
continue |
|
} |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(sample.Metric), |
|
F: sample.H.Sum, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === histogram_stddev(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcHistogramStdDev(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
inVec := vals[0].(Vector) |
|
|
|
for _, sample := range inVec { |
|
// Skip non-histogram samples. |
|
if sample.H == nil { |
|
continue |
|
} |
|
mean := sample.H.Sum / sample.H.Count |
|
var variance, cVariance float64 |
|
it := sample.H.AllBucketIterator() |
|
for it.Next() { |
|
bucket := it.At() |
|
var val float64 |
|
if bucket.Lower <= 0 && 0 <= bucket.Upper { |
|
val = 0 |
|
} else { |
|
val = math.Sqrt(bucket.Upper * bucket.Lower) |
|
} |
|
delta := val - mean |
|
variance, cVariance = kahanSumInc(bucket.Count*delta*delta, variance, cVariance) |
|
} |
|
variance += cVariance |
|
variance /= sample.H.Count |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(sample.Metric), |
|
F: math.Sqrt(variance), |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === histogram_stdvar(Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcHistogramStdVar(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
inVec := vals[0].(Vector) |
|
|
|
for _, sample := range inVec { |
|
// Skip non-histogram samples. |
|
if sample.H == nil { |
|
continue |
|
} |
|
mean := sample.H.Sum / sample.H.Count |
|
var variance, cVariance float64 |
|
it := sample.H.AllBucketIterator() |
|
for it.Next() { |
|
bucket := it.At() |
|
var val float64 |
|
if bucket.Lower <= 0 && 0 <= bucket.Upper { |
|
val = 0 |
|
} else { |
|
val = math.Sqrt(bucket.Upper * bucket.Lower) |
|
} |
|
delta := val - mean |
|
variance, cVariance = kahanSumInc(bucket.Count*delta*delta, variance, cVariance) |
|
} |
|
variance += cVariance |
|
variance /= sample.H.Count |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(sample.Metric), |
|
F: variance, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === histogram_fraction(lower, upper parser.ValueTypeScalar, Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
lower := vals[0].(Vector)[0].F |
|
upper := vals[1].(Vector)[0].F |
|
inVec := vals[2].(Vector) |
|
|
|
for _, sample := range inVec { |
|
// Skip non-histogram samples. |
|
if sample.H == nil { |
|
continue |
|
} |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(sample.Metric), |
|
F: histogramFraction(lower, upper, sample.H), |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === histogram_quantile(k parser.ValueTypeScalar, Vector parser.ValueTypeVector) (Vector, Annotations) === |
|
func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
q := vals[0].(Vector)[0].F |
|
inVec := vals[1].(Vector) |
|
var annos annotations.Annotations |
|
|
|
if math.IsNaN(q) || q < 0 || q > 1 { |
|
annos.Add(annotations.NewInvalidQuantileWarning(q, args[0].PositionRange())) |
|
} |
|
|
|
if enh.signatureToMetricWithBuckets == nil { |
|
enh.signatureToMetricWithBuckets = map[string]*metricWithBuckets{} |
|
} else { |
|
for _, v := range enh.signatureToMetricWithBuckets { |
|
v.buckets = v.buckets[:0] |
|
} |
|
} |
|
|
|
var histogramSamples []Sample |
|
|
|
for _, sample := range inVec { |
|
// We are only looking for classic buckets here. Remember |
|
// the histograms for later treatment. |
|
if sample.H != nil { |
|
histogramSamples = append(histogramSamples, sample) |
|
continue |
|
} |
|
|
|
upperBound, err := strconv.ParseFloat( |
|
sample.Metric.Get(model.BucketLabel), 64, |
|
) |
|
if err != nil { |
|
annos.Add(annotations.NewBadBucketLabelWarning(sample.Metric.Get(labels.MetricName), sample.Metric.Get(model.BucketLabel), args[1].PositionRange())) |
|
continue |
|
} |
|
enh.lblBuf = sample.Metric.BytesWithoutLabels(enh.lblBuf, labels.BucketLabel) |
|
mb, ok := enh.signatureToMetricWithBuckets[string(enh.lblBuf)] |
|
if !ok { |
|
sample.Metric = labels.NewBuilder(sample.Metric). |
|
Del(excludedLabels...). |
|
Labels() |
|
|
|
mb = &metricWithBuckets{sample.Metric, nil} |
|
enh.signatureToMetricWithBuckets[string(enh.lblBuf)] = mb |
|
} |
|
mb.buckets = append(mb.buckets, bucket{upperBound, sample.F}) |
|
|
|
} |
|
|
|
// Now deal with the histograms. |
|
for _, sample := range histogramSamples { |
|
// We have to reconstruct the exact same signature as above for |
|
// a classic histogram, just ignoring any le label. |
|
enh.lblBuf = sample.Metric.Bytes(enh.lblBuf) |
|
if mb, ok := enh.signatureToMetricWithBuckets[string(enh.lblBuf)]; ok && len(mb.buckets) > 0 { |
|
// At this data point, we have classic histogram |
|
// buckets and a native histogram with the same name and |
|
// labels. Do not evaluate anything. |
|
annos.Add(annotations.NewMixedClassicNativeHistogramsWarning(sample.Metric.Get(labels.MetricName), args[1].PositionRange())) |
|
delete(enh.signatureToMetricWithBuckets, string(enh.lblBuf)) |
|
continue |
|
} |
|
|
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(sample.Metric), |
|
F: histogramQuantile(q, sample.H), |
|
}) |
|
} |
|
|
|
for _, mb := range enh.signatureToMetricWithBuckets { |
|
if len(mb.buckets) > 0 { |
|
res, forcedMonotonicity, _ := bucketQuantile(q, mb.buckets) |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: mb.metric, |
|
F: res, |
|
}) |
|
if forcedMonotonicity { |
|
annos.Add(annotations.NewHistogramQuantileForcedMonotonicityInfo(mb.metric.Get(labels.MetricName), args[1].PositionRange())) |
|
} |
|
} |
|
} |
|
|
|
return enh.Out, annos |
|
} |
|
|
|
// === resets(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcResets(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
floats := vals[0].(Matrix)[0].Floats |
|
histograms := vals[0].(Matrix)[0].Histograms |
|
resets := 0 |
|
|
|
if len(floats) > 1 { |
|
prev := floats[0].F |
|
for _, sample := range floats[1:] { |
|
current := sample.F |
|
if current < prev { |
|
resets++ |
|
} |
|
prev = current |
|
} |
|
} |
|
|
|
if len(histograms) > 1 { |
|
prev := histograms[0].H |
|
for _, sample := range histograms[1:] { |
|
current := sample.H |
|
if current.DetectReset(prev) { |
|
resets++ |
|
} |
|
prev = current |
|
} |
|
} |
|
|
|
return append(enh.Out, Sample{F: float64(resets)}), nil |
|
} |
|
|
|
// === changes(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === |
|
func funcChanges(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
floats := vals[0].(Matrix)[0].Floats |
|
changes := 0 |
|
|
|
if len(floats) == 0 { |
|
// TODO(beorn7): Only histogram values, still need to add support. |
|
return enh.Out, nil |
|
} |
|
|
|
prev := floats[0].F |
|
for _, sample := range floats[1:] { |
|
current := sample.F |
|
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) { |
|
changes++ |
|
} |
|
prev = current |
|
} |
|
|
|
return append(enh.Out, Sample{F: float64(changes)}), nil |
|
} |
|
|
|
// === label_replace(Vector parser.ValueTypeVector, dst_label, replacement, src_labelname, regex parser.ValueTypeString) (Vector, Annotations) === |
|
func funcLabelReplace(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
var ( |
|
vector = vals[0].(Vector) |
|
dst = stringFromArg(args[1]) |
|
repl = stringFromArg(args[2]) |
|
src = stringFromArg(args[3]) |
|
regexStr = stringFromArg(args[4]) |
|
) |
|
|
|
if enh.regex == nil { |
|
var err error |
|
enh.regex, err = regexp.Compile("^(?:" + regexStr + ")$") |
|
if err != nil { |
|
panic(fmt.Errorf("invalid regular expression in label_replace(): %s", regexStr)) |
|
} |
|
if !model.LabelNameRE.MatchString(dst) { |
|
panic(fmt.Errorf("invalid destination label name in label_replace(): %s", dst)) |
|
} |
|
enh.Dmn = make(map[uint64]labels.Labels, len(enh.Out)) |
|
} |
|
|
|
for _, el := range vector { |
|
h := el.Metric.Hash() |
|
var outMetric labels.Labels |
|
if l, ok := enh.Dmn[h]; ok { |
|
outMetric = l |
|
} else { |
|
srcVal := el.Metric.Get(src) |
|
indexes := enh.regex.FindStringSubmatchIndex(srcVal) |
|
if indexes == nil { |
|
// If there is no match, no replacement should take place. |
|
outMetric = el.Metric |
|
enh.Dmn[h] = outMetric |
|
} else { |
|
res := enh.regex.ExpandString([]byte{}, repl, srcVal, indexes) |
|
|
|
lb := labels.NewBuilder(el.Metric).Del(dst) |
|
if len(res) > 0 { |
|
lb.Set(dst, string(res)) |
|
} |
|
outMetric = lb.Labels() |
|
enh.Dmn[h] = outMetric |
|
} |
|
} |
|
|
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: outMetric, |
|
F: el.F, |
|
H: el.H, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// === Vector(s Scalar) (Vector, Annotations) === |
|
func funcVector(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return append(enh.Out, |
|
Sample{ |
|
Metric: labels.Labels{}, |
|
F: vals[0].(Vector)[0].F, |
|
}), nil |
|
} |
|
|
|
// === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) (Vector, Annotations) === |
|
func funcLabelJoin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
var ( |
|
vector = vals[0].(Vector) |
|
dst = stringFromArg(args[1]) |
|
sep = stringFromArg(args[2]) |
|
srcLabels = make([]string, len(args)-3) |
|
) |
|
|
|
if enh.Dmn == nil { |
|
enh.Dmn = make(map[uint64]labels.Labels, len(enh.Out)) |
|
} |
|
|
|
for i := 3; i < len(args); i++ { |
|
src := stringFromArg(args[i]) |
|
if !model.LabelName(src).IsValid() { |
|
panic(fmt.Errorf("invalid source label name in label_join(): %s", src)) |
|
} |
|
srcLabels[i-3] = src |
|
} |
|
|
|
if !model.LabelName(dst).IsValid() { |
|
panic(fmt.Errorf("invalid destination label name in label_join(): %s", dst)) |
|
} |
|
|
|
srcVals := make([]string, len(srcLabels)) |
|
for _, el := range vector { |
|
h := el.Metric.Hash() |
|
var outMetric labels.Labels |
|
if l, ok := enh.Dmn[h]; ok { |
|
outMetric = l |
|
} else { |
|
|
|
for i, src := range srcLabels { |
|
srcVals[i] = el.Metric.Get(src) |
|
} |
|
|
|
lb := labels.NewBuilder(el.Metric) |
|
|
|
strval := strings.Join(srcVals, sep) |
|
if strval == "" { |
|
lb.Del(dst) |
|
} else { |
|
lb.Set(dst, strval) |
|
} |
|
|
|
outMetric = lb.Labels() |
|
enh.Dmn[h] = outMetric |
|
} |
|
|
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: outMetric, |
|
F: el.F, |
|
H: el.H, |
|
}) |
|
} |
|
return enh.Out, nil |
|
} |
|
|
|
// Common code for date related functions. |
|
func dateWrapper(vals []parser.Value, enh *EvalNodeHelper, f func(time.Time) float64) Vector { |
|
if len(vals) == 0 { |
|
return append(enh.Out, |
|
Sample{ |
|
Metric: labels.Labels{}, |
|
F: f(time.Unix(enh.Ts/1000, 0).UTC()), |
|
}) |
|
} |
|
|
|
for _, el := range vals[0].(Vector) { |
|
t := time.Unix(int64(el.F), 0).UTC() |
|
enh.Out = append(enh.Out, Sample{ |
|
Metric: enh.DropMetricName(el.Metric), |
|
F: f(t), |
|
}) |
|
} |
|
return enh.Out |
|
} |
|
|
|
// === days_in_month(v Vector) Scalar === |
|
func funcDaysInMonth(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day()) |
|
}), nil |
|
} |
|
|
|
// === day_of_month(v Vector) Scalar === |
|
func funcDayOfMonth(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.Day()) |
|
}), nil |
|
} |
|
|
|
// === day_of_week(v Vector) Scalar === |
|
func funcDayOfWeek(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.Weekday()) |
|
}), nil |
|
} |
|
|
|
// === day_of_year(v Vector) Scalar === |
|
func funcDayOfYear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.YearDay()) |
|
}), nil |
|
} |
|
|
|
// === hour(v Vector) Scalar === |
|
func funcHour(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.Hour()) |
|
}), nil |
|
} |
|
|
|
// === minute(v Vector) Scalar === |
|
func funcMinute(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.Minute()) |
|
}), nil |
|
} |
|
|
|
// === month(v Vector) Scalar === |
|
func funcMonth(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.Month()) |
|
}), nil |
|
} |
|
|
|
// === year(v Vector) Scalar === |
|
func funcYear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { |
|
return dateWrapper(vals, enh, func(t time.Time) float64 { |
|
return float64(t.Year()) |
|
}), nil |
|
} |
|
|
|
// FunctionCalls is a list of all functions supported by PromQL, including their types. |
|
var FunctionCalls = map[string]FunctionCall{ |
|
"abs": funcAbs, |
|
"absent": funcAbsent, |
|
"absent_over_time": funcAbsentOverTime, |
|
"acos": funcAcos, |
|
"acosh": funcAcosh, |
|
"asin": funcAsin, |
|
"asinh": funcAsinh, |
|
"atan": funcAtan, |
|
"atanh": funcAtanh, |
|
"avg_over_time": funcAvgOverTime, |
|
"ceil": funcCeil, |
|
"changes": funcChanges, |
|
"clamp": funcClamp, |
|
"clamp_max": funcClampMax, |
|
"clamp_min": funcClampMin, |
|
"cos": funcCos, |
|
"cosh": funcCosh, |
|
"count_over_time": funcCountOverTime, |
|
"days_in_month": funcDaysInMonth, |
|
"day_of_month": funcDayOfMonth, |
|
"day_of_week": funcDayOfWeek, |
|
"day_of_year": funcDayOfYear, |
|
"deg": funcDeg, |
|
"delta": funcDelta, |
|
"deriv": funcDeriv, |
|
"exp": funcExp, |
|
"floor": funcFloor, |
|
"histogram_count": funcHistogramCount, |
|
"histogram_fraction": funcHistogramFraction, |
|
"histogram_quantile": funcHistogramQuantile, |
|
"histogram_sum": funcHistogramSum, |
|
"histogram_stddev": funcHistogramStdDev, |
|
"histogram_stdvar": funcHistogramStdVar, |
|
"holt_winters": funcHoltWinters, |
|
"hour": funcHour, |
|
"idelta": funcIdelta, |
|
"increase": funcIncrease, |
|
"irate": funcIrate, |
|
"label_replace": funcLabelReplace, |
|
"label_join": funcLabelJoin, |
|
"ln": funcLn, |
|
"log10": funcLog10, |
|
"log2": funcLog2, |
|
"last_over_time": funcLastOverTime, |
|
"max_over_time": funcMaxOverTime, |
|
"min_over_time": funcMinOverTime, |
|
"minute": funcMinute, |
|
"month": funcMonth, |
|
"pi": funcPi, |
|
"predict_linear": funcPredictLinear, |
|
"present_over_time": funcPresentOverTime, |
|
"quantile_over_time": funcQuantileOverTime, |
|
"rad": funcRad, |
|
"rate": funcRate, |
|
"resets": funcResets, |
|
"round": funcRound, |
|
"scalar": funcScalar, |
|
"sgn": funcSgn, |
|
"sin": funcSin, |
|
"sinh": funcSinh, |
|
"sort": funcSort, |
|
"sort_desc": funcSortDesc, |
|
"sort_by_label": funcSortByLabel, |
|
"sort_by_label_desc": funcSortByLabelDesc, |
|
"sqrt": funcSqrt, |
|
"stddev_over_time": funcStddevOverTime, |
|
"stdvar_over_time": funcStdvarOverTime, |
|
"sum_over_time": funcSumOverTime, |
|
"tan": funcTan, |
|
"tanh": funcTanh, |
|
"time": funcTime, |
|
"timestamp": funcTimestamp, |
|
"vector": funcVector, |
|
"year": funcYear, |
|
} |
|
|
|
// AtModifierUnsafeFunctions are the functions whose result |
|
// can vary if evaluation time is changed when the arguments are |
|
// step invariant. It also includes functions that use the timestamps |
|
// of the passed instant vector argument to calculate a result since |
|
// that can also change with change in eval time. |
|
var AtModifierUnsafeFunctions = map[string]struct{}{ |
|
// Step invariant functions. |
|
"days_in_month": {}, "day_of_month": {}, "day_of_week": {}, "day_of_year": {}, |
|
"hour": {}, "minute": {}, "month": {}, "year": {}, |
|
"predict_linear": {}, "time": {}, |
|
// Uses timestamp of the argument for the result, |
|
// hence unsafe to use with @ modifier. |
|
"timestamp": {}, |
|
} |
|
|
|
type vectorByValueHeap Vector |
|
|
|
func (s vectorByValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool { |
|
// We compare histograms based on their sum of observations. |
|
// TODO(beorn7): Is that what we want? |
|
vi, vj := s[i].F, s[j].F |
|
if s[i].H != nil { |
|
vi = s[i].H.Sum |
|
} |
|
if s[j].H != nil { |
|
vj = s[j].H.Sum |
|
} |
|
|
|
if math.IsNaN(vi) { |
|
return true |
|
} |
|
return vi < vj |
|
} |
|
|
|
func (s vectorByValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) { |
|
*s = append(*s, *(x.(*Sample))) |
|
} |
|
|
|
func (s *vectorByValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
} |
|
|
|
type vectorByReverseValueHeap Vector |
|
|
|
func (s vectorByReverseValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByReverseValueHeap) Less(i, j int) bool { |
|
// We compare histograms based on their sum of observations. |
|
// TODO(beorn7): Is that what we want? |
|
vi, vj := s[i].F, s[j].F |
|
if s[i].H != nil { |
|
vi = s[i].H.Sum |
|
} |
|
if s[j].H != nil { |
|
vj = s[j].H.Sum |
|
} |
|
|
|
if math.IsNaN(vi) { |
|
return true |
|
} |
|
return vi > vj |
|
} |
|
|
|
func (s vectorByReverseValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByReverseValueHeap) Push(x interface{}) { |
|
*s = append(*s, *(x.(*Sample))) |
|
} |
|
|
|
func (s *vectorByReverseValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
} |
|
|
|
// createLabelsForAbsentFunction returns the labels that are uniquely and exactly matched |
|
// in a given expression. It is used in the absent functions. |
|
func createLabelsForAbsentFunction(expr parser.Expr) labels.Labels { |
|
b := labels.NewBuilder(labels.EmptyLabels()) |
|
|
|
var lm []*labels.Matcher |
|
switch n := expr.(type) { |
|
case *parser.VectorSelector: |
|
lm = n.LabelMatchers |
|
case *parser.MatrixSelector: |
|
lm = n.VectorSelector.(*parser.VectorSelector).LabelMatchers |
|
default: |
|
return labels.EmptyLabels() |
|
} |
|
|
|
// The 'has' map implements backwards-compatibility for historic behaviour: |
|
// e.g. in `absent(x{job="a",job="b",foo="bar"})` then `job` is removed from the output. |
|
// Note this gives arguably wrong behaviour for `absent(x{job="a",job="a",foo="bar"})`. |
|
has := make(map[string]bool, len(lm)) |
|
for _, ma := range lm { |
|
if ma.Name == labels.MetricName { |
|
continue |
|
} |
|
if ma.Type == labels.MatchEqual && !has[ma.Name] { |
|
b.Set(ma.Name, ma.Value) |
|
has[ma.Name] = true |
|
} else { |
|
b.Del(ma.Name) |
|
} |
|
} |
|
|
|
return b.Labels() |
|
} |
|
|
|
func stringFromArg(e parser.Expr) string { |
|
tmp := unwrapStepInvariantExpr(e) // Unwrap StepInvariant |
|
unwrapParenExpr(&tmp) // Optionally unwrap ParenExpr |
|
return tmp.(*parser.StringLiteral).Val |
|
} |
|
|
|
func stringSliceFromArgs(args parser.Expressions) []string { |
|
tmp := make([]string, len(args)) |
|
for i := 0; i < len(args); i++ { |
|
tmp[i] = stringFromArg(args[i]) |
|
} |
|
return tmp |
|
}
|
|
|