The Prometheus monitoring system and time series database.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

108 lines
3.3 KiB

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"math"
"sort"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/storage/metric"
)
// Helpers to calculate quantiles.
// excludedLabels are the labels to exclude from signature calculation for
// quantiles.
var excludedLabels = map[model.LabelName]struct{}{
model.MetricNameLabel: {},
model.BucketLabel: {},
}
type bucket struct {
upperBound float64
count model.SampleValue
}
// buckets implements sort.Interface.
type buckets []bucket
func (b buckets) Len() int { return len(b) }
func (b buckets) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b buckets) Less(i, j int) bool { return b[i].upperBound < b[j].upperBound }
type metricWithBuckets struct {
metric metric.Metric
buckets buckets
}
// quantile calculates the quantile 'q' based on the given buckets. The buckets
// will be sorted by upperBound by this function (i.e. no sorting needed before
// calling this function). The quantile value is interpolated assuming a linear
// distribution within a bucket. However, if the quantile falls into the highest
// bucket, the upper bound of the 2nd highest bucket is returned. A natural
// lower bound of 0 is assumed if the upper bound of the lowest bucket is
// greater 0. In that case, interpolation in the lowest bucket happens linearly
// between 0 and the upper bound of the lowest bucket. However, if the lowest
// bucket has an upper bound less or equal 0, this upper bound is returned if
// the quantile falls into the lowest bucket.
//
// There are a number of special cases (once we have a way to report errors
// happening during evaluations of AST functions, we should report those
// explicitly):
//
// If 'buckets' has fewer than 2 elements, NaN is returned.
//
// If the highest bucket is not +Inf, NaN is returned.
//
// If q<0, -Inf is returned.
//
// If q>1, +Inf is returned.
func quantile(q model.SampleValue, buckets buckets) float64 {
if q < 0 {
return math.Inf(-1)
}
if q > 1 {
return math.Inf(+1)
}
if len(buckets) < 2 {
return math.NaN()
}
sort.Sort(buckets)
if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
return math.NaN()
}
rank := q * buckets[len(buckets)-1].count
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
if b == len(buckets)-1 {
return buckets[len(buckets)-2].upperBound
}
if b == 0 && buckets[0].upperBound <= 0 {
return buckets[0].upperBound
}
var (
bucketStart float64
bucketEnd = buckets[b].upperBound
count = buckets[b].count
)
if b > 0 {
bucketStart = buckets[b-1].upperBound
count -= buckets[b-1].count
rank -= buckets[b-1].count
}
return bucketStart + (bucketEnd-bucketStart)*float64(rank/count)
}