mirror of https://github.com/prometheus/prometheus
556 lines
19 KiB
Go
556 lines
19 KiB
Go
// Copyright 2015 The Prometheus Authors
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
package promql
|
||
|
||
import (
|
||
"math"
|
||
"slices"
|
||
"sort"
|
||
|
||
"github.com/prometheus/prometheus/model/histogram"
|
||
"github.com/prometheus/prometheus/model/labels"
|
||
"github.com/prometheus/prometheus/util/almost"
|
||
)
|
||
|
||
// smallDeltaTolerance is the threshold for relative deltas between classic
|
||
// histogram buckets that will be ignored by the histogram_quantile function
|
||
// because they are most likely artifacts of floating point precision issues.
|
||
// Testing on 2 sets of real data with bugs arising from small deltas,
|
||
// the safe ranges were from:
|
||
// - 1e-05 to 1e-15
|
||
// - 1e-06 to 1e-15
|
||
// Anything to the left of that would cause non-query-sharded data to have
|
||
// small deltas ignored (unnecessary and we should avoid this), and anything
|
||
// to the right of that would cause query-sharded data to not have its small
|
||
// deltas ignored (so the problem won't be fixed).
|
||
// For context, query sharding triggers these float precision errors in Mimir.
|
||
// To illustrate, with a relative deviation of 1e-12, we need to have 1e12
|
||
// observations in the bucket so that the change of one observation is small
|
||
// enough to get ignored. With the usual observation rate even of very busy
|
||
// services, this will hardly be reached in timeframes that matters for
|
||
// monitoring.
|
||
const smallDeltaTolerance = 1e-12
|
||
|
||
// Helpers to calculate quantiles.
|
||
|
||
// excludedLabels are the labels to exclude from signature calculation for
|
||
// quantiles.
|
||
var excludedLabels = []string{
|
||
labels.MetricName,
|
||
labels.BucketLabel,
|
||
}
|
||
|
||
// Bucket represents a bucket of a classic histogram. It is used internally by the promql
|
||
// package, but it is nevertheless exported for potential use in other PromQL engines.
|
||
type Bucket struct {
|
||
UpperBound float64
|
||
Count float64
|
||
}
|
||
|
||
// Buckets implements sort.Interface.
|
||
type Buckets []Bucket
|
||
|
||
type metricWithBuckets struct {
|
||
metric labels.Labels
|
||
buckets Buckets
|
||
}
|
||
|
||
// BucketQuantile calculates the quantile 'q' based on the given buckets. The
|
||
// buckets will be sorted by upperBound by this function (i.e. no sorting
|
||
// needed before calling this function). The quantile value is interpolated
|
||
// assuming a linear distribution within a bucket. However, if the quantile
|
||
// falls into the highest bucket, the upper bound of the 2nd highest bucket is
|
||
// returned. A natural lower bound of 0 is assumed if the upper bound of the
|
||
// lowest bucket is greater 0. In that case, interpolation in the lowest bucket
|
||
// happens linearly between 0 and the upper bound of the lowest bucket.
|
||
// However, if the lowest bucket has an upper bound less or equal 0, this upper
|
||
// bound is returned if the quantile falls into the lowest bucket.
|
||
//
|
||
// There are a number of special cases (once we have a way to report errors
|
||
// happening during evaluations of AST functions, we should report those
|
||
// explicitly):
|
||
//
|
||
// If 'buckets' has 0 observations, NaN is returned.
|
||
//
|
||
// If 'buckets' has fewer than 2 elements, NaN is returned.
|
||
//
|
||
// If the highest bucket is not +Inf, NaN is returned.
|
||
//
|
||
// If q==NaN, NaN is returned.
|
||
//
|
||
// If q<0, -Inf is returned.
|
||
//
|
||
// If q>1, +Inf is returned.
|
||
//
|
||
// We also return a bool to indicate if monotonicity needed to be forced,
|
||
// and another bool to indicate if small differences between buckets (that
|
||
// are likely artifacts of floating point precision issues) have been
|
||
// ignored.
|
||
//
|
||
// Generically speaking, BucketQuantile is for calculating the
|
||
// histogram_quantile() of classic histograms. See also: HistogramQuantile
|
||
// for native histograms.
|
||
//
|
||
// BucketQuantile is exported as a useful quantile function over a set of
|
||
// given buckets. It may be used by other PromQL engine implementations.
|
||
func BucketQuantile(q float64, buckets Buckets) (float64, bool, bool) {
|
||
if math.IsNaN(q) {
|
||
return math.NaN(), false, false
|
||
}
|
||
if q < 0 {
|
||
return math.Inf(-1), false, false
|
||
}
|
||
if q > 1 {
|
||
return math.Inf(+1), false, false
|
||
}
|
||
slices.SortFunc(buckets, func(a, b Bucket) int {
|
||
// We don't expect the bucket boundary to be a NaN.
|
||
if a.UpperBound < b.UpperBound {
|
||
return -1
|
||
}
|
||
if a.UpperBound > b.UpperBound {
|
||
return +1
|
||
}
|
||
return 0
|
||
})
|
||
if !math.IsInf(buckets[len(buckets)-1].UpperBound, +1) {
|
||
return math.NaN(), false, false
|
||
}
|
||
|
||
buckets = coalesceBuckets(buckets)
|
||
forcedMonotonic, fixedPrecision := ensureMonotonicAndIgnoreSmallDeltas(buckets, smallDeltaTolerance)
|
||
|
||
if len(buckets) < 2 {
|
||
return math.NaN(), false, false
|
||
}
|
||
observations := buckets[len(buckets)-1].Count
|
||
if observations == 0 {
|
||
return math.NaN(), false, false
|
||
}
|
||
rank := q * observations
|
||
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].Count >= rank })
|
||
|
||
if b == len(buckets)-1 {
|
||
return buckets[len(buckets)-2].UpperBound, forcedMonotonic, fixedPrecision
|
||
}
|
||
if b == 0 && buckets[0].UpperBound <= 0 {
|
||
return buckets[0].UpperBound, forcedMonotonic, fixedPrecision
|
||
}
|
||
var (
|
||
bucketStart float64
|
||
bucketEnd = buckets[b].UpperBound
|
||
count = buckets[b].Count
|
||
)
|
||
if b > 0 {
|
||
bucketStart = buckets[b-1].UpperBound
|
||
count -= buckets[b-1].Count
|
||
rank -= buckets[b-1].Count
|
||
}
|
||
return bucketStart + (bucketEnd-bucketStart)*(rank/count), forcedMonotonic, fixedPrecision
|
||
}
|
||
|
||
// HistogramQuantile calculates the quantile 'q' based on the given histogram.
|
||
//
|
||
// For custom buckets, the result is interpolated linearly, i.e. it is assumed
|
||
// the observations are uniformly distributed within each bucket. (This is a
|
||
// quite blunt assumption, but it is consistent with the interpolation method
|
||
// used for classic histograms so far.)
|
||
//
|
||
// For exponential buckets, the interpolation is done under the assumption that
|
||
// the samples within each bucket are distributed in a way that they would
|
||
// uniformly populate the buckets in a hypothetical histogram with higher
|
||
// resolution. For example, if the rank calculation suggests that the requested
|
||
// quantile is right in the middle of the population of the (1,2] bucket, we
|
||
// assume the quantile would be right at the bucket boundary between the two
|
||
// buckets the (1,2] bucket would be divided into if the histogram had double
|
||
// the resolution, which is 2**2**-1 = 1.4142... We call this exponential
|
||
// interpolation.
|
||
//
|
||
// However, for a quantile that ends up in the zero bucket, this method isn't
|
||
// very helpful (because there is an infinite number of buckets close to zero,
|
||
// so we would have to assume zero as the result). Therefore, we return to
|
||
// linear interpolation in the zero bucket.
|
||
//
|
||
// A natural lower bound of 0 is assumed if the histogram has only positive
|
||
// buckets. Likewise, a natural upper bound of 0 is assumed if the histogram has
|
||
// only negative buckets.
|
||
//
|
||
// There are a number of special cases:
|
||
//
|
||
// If the histogram has 0 observations, NaN is returned.
|
||
//
|
||
// If q<0, -Inf is returned.
|
||
//
|
||
// If q>1, +Inf is returned.
|
||
//
|
||
// If q is NaN, NaN is returned.
|
||
//
|
||
// HistogramQuantile is for calculating the histogram_quantile() of native
|
||
// histograms. See also: BucketQuantile for classic histograms.
|
||
//
|
||
// HistogramQuantile is exported as it may be used by other PromQL engine
|
||
// implementations.
|
||
func HistogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
||
if q < 0 {
|
||
return math.Inf(-1)
|
||
}
|
||
if q > 1 {
|
||
return math.Inf(+1)
|
||
}
|
||
|
||
if h.Count == 0 || math.IsNaN(q) {
|
||
return math.NaN()
|
||
}
|
||
|
||
var (
|
||
bucket histogram.Bucket[float64]
|
||
count float64
|
||
it histogram.BucketIterator[float64]
|
||
rank float64
|
||
)
|
||
|
||
// If there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator.
|
||
// If q < 0.5, use the forward iterator.
|
||
// If q >= 0.5, use the reverse iterator.
|
||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||
it = h.AllBucketIterator()
|
||
rank = q * h.Count
|
||
} else {
|
||
it = h.AllReverseBucketIterator()
|
||
rank = (1 - q) * h.Count
|
||
}
|
||
|
||
for it.Next() {
|
||
bucket = it.At()
|
||
if bucket.Count == 0 {
|
||
continue
|
||
}
|
||
count += bucket.Count
|
||
if count >= rank {
|
||
break
|
||
}
|
||
}
|
||
if !h.UsesCustomBuckets() && bucket.Lower < 0 && bucket.Upper > 0 {
|
||
switch {
|
||
case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
|
||
// The result is in the zero bucket and the histogram has only
|
||
// positive buckets. So we consider 0 to be the lower bound.
|
||
bucket.Lower = 0
|
||
case len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0:
|
||
// The result is in the zero bucket and the histogram has only
|
||
// negative buckets. So we consider 0 to be the upper bound.
|
||
bucket.Upper = 0
|
||
}
|
||
} else if h.UsesCustomBuckets() {
|
||
if bucket.Lower == math.Inf(-1) {
|
||
// first bucket, with lower bound -Inf
|
||
if bucket.Upper <= 0 {
|
||
return bucket.Upper
|
||
}
|
||
bucket.Lower = 0
|
||
} else if bucket.Upper == math.Inf(1) {
|
||
// last bucket, with upper bound +Inf
|
||
return bucket.Lower
|
||
}
|
||
}
|
||
// Due to numerical inaccuracies, we could end up with a higher count
|
||
// than h.Count. Thus, make sure count is never higher than h.Count.
|
||
if count > h.Count {
|
||
count = h.Count
|
||
}
|
||
// We could have hit the highest bucket without even reaching the rank
|
||
// (this should only happen if the histogram contains observations of
|
||
// the value NaN), in which case we simply return the upper limit of the
|
||
// highest explicit bucket.
|
||
if count < rank {
|
||
return bucket.Upper
|
||
}
|
||
|
||
// NaN observations increase h.Count but not the total number of
|
||
// observations in the buckets. Therefore, we have to use the forward
|
||
// iterator to find percentiles. We recognize histograms containing NaN
|
||
// observations by checking if their h.Sum is NaN.
|
||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||
rank -= count - bucket.Count
|
||
} else {
|
||
rank = count - rank
|
||
}
|
||
|
||
// The fraction of how far we are into the current bucket.
|
||
fraction := rank / bucket.Count
|
||
|
||
// Return linear interpolation for custom buckets and for quantiles that
|
||
// end up in the zero bucket.
|
||
if h.UsesCustomBuckets() || (bucket.Lower <= 0 && bucket.Upper >= 0) {
|
||
return bucket.Lower + (bucket.Upper-bucket.Lower)*fraction
|
||
}
|
||
|
||
// For exponential buckets, we interpolate on a logarithmic scale. On a
|
||
// logarithmic scale, the exponential bucket boundaries (for any schema)
|
||
// become linear (every bucket has the same width). Therefore, after
|
||
// taking the logarithm of both bucket boundaries, we can use the
|
||
// calculated fraction in the same way as for linear interpolation (see
|
||
// above). Finally, we return to the normal scale by applying the
|
||
// exponential function to the result.
|
||
logLower := math.Log2(math.Abs(bucket.Lower))
|
||
logUpper := math.Log2(math.Abs(bucket.Upper))
|
||
if bucket.Lower > 0 { // Positive bucket.
|
||
return math.Exp2(logLower + (logUpper-logLower)*fraction)
|
||
}
|
||
// Otherwise, we are in a negative bucket and have to mirror things.
|
||
return -math.Exp2(logUpper + (logLower-logUpper)*(1-fraction))
|
||
}
|
||
|
||
// HistogramFraction calculates the fraction of observations between the
|
||
// provided lower and upper bounds, based on the provided histogram.
|
||
//
|
||
// HistogramFraction is in a certain way the inverse of histogramQuantile. If
|
||
// HistogramQuantile(0.9, h) returns 123.4, then HistogramFraction(-Inf, 123.4, h)
|
||
// returns 0.9.
|
||
//
|
||
// The same notes with regard to interpolation and assumptions about the zero
|
||
// bucket boundaries apply as for histogramQuantile.
|
||
//
|
||
// Whether either boundary is inclusive or exclusive doesn’t actually matter as
|
||
// long as interpolation has to be performed anyway. In the case of a boundary
|
||
// coinciding with a bucket boundary, the inclusive or exclusive nature of the
|
||
// boundary determines the exact behavior of the threshold. With the current
|
||
// implementation, that means that lower is exclusive for positive values and
|
||
// inclusive for negative values, while upper is inclusive for positive values
|
||
// and exclusive for negative values.
|
||
//
|
||
// Special cases:
|
||
//
|
||
// If the histogram has 0 observations, NaN is returned.
|
||
//
|
||
// Use a lower bound of -Inf to get the fraction of all observations below the
|
||
// upper bound.
|
||
//
|
||
// Use an upper bound of +Inf to get the fraction of all observations above the
|
||
// lower bound.
|
||
//
|
||
// If lower or upper is NaN, NaN is returned.
|
||
//
|
||
// If lower >= upper and the histogram has at least 1 observation, zero is returned.
|
||
//
|
||
// HistogramFraction is exported as it may be used by other PromQL engine
|
||
// implementations.
|
||
func HistogramFraction(lower, upper float64, h *histogram.FloatHistogram) float64 {
|
||
if h.Count == 0 || math.IsNaN(lower) || math.IsNaN(upper) {
|
||
return math.NaN()
|
||
}
|
||
if lower >= upper {
|
||
return 0
|
||
}
|
||
|
||
var (
|
||
rank, lowerRank, upperRank float64
|
||
lowerSet, upperSet bool
|
||
it = h.AllBucketIterator()
|
||
)
|
||
for it.Next() {
|
||
b := it.At()
|
||
zeroBucket := false
|
||
|
||
// interpolateLinearly is used for custom buckets to be
|
||
// consistent with the linear interpolation known from classic
|
||
// histograms. It is also used for the zero bucket.
|
||
interpolateLinearly := func(v float64) float64 {
|
||
return rank + b.Count*(v-b.Lower)/(b.Upper-b.Lower)
|
||
}
|
||
|
||
// interpolateExponentially is using the same exponential
|
||
// interpolation method as above for histogramQuantile. This
|
||
// method is a better fit for exponential bucketing.
|
||
interpolateExponentially := func(v float64) float64 {
|
||
var (
|
||
logLower = math.Log2(math.Abs(b.Lower))
|
||
logUpper = math.Log2(math.Abs(b.Upper))
|
||
logV = math.Log2(math.Abs(v))
|
||
fraction float64
|
||
)
|
||
if v > 0 {
|
||
fraction = (logV - logLower) / (logUpper - logLower)
|
||
} else {
|
||
fraction = 1 - ((logV - logUpper) / (logLower - logUpper))
|
||
}
|
||
return rank + b.Count*fraction
|
||
}
|
||
|
||
if b.Lower <= 0 && b.Upper >= 0 {
|
||
zeroBucket = true
|
||
switch {
|
||
case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
|
||
// This is the zero bucket and the histogram has only
|
||
// positive buckets. So we consider 0 to be the lower
|
||
// bound.
|
||
b.Lower = 0
|
||
case len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0:
|
||
// This is in the zero bucket and the histogram has only
|
||
// negative buckets. So we consider 0 to be the upper
|
||
// bound.
|
||
b.Upper = 0
|
||
}
|
||
}
|
||
if !lowerSet && b.Lower >= lower {
|
||
// We have hit the lower value at the lower bucket boundary.
|
||
lowerRank = rank
|
||
lowerSet = true
|
||
}
|
||
if !upperSet && b.Lower >= upper {
|
||
// We have hit the upper value at the lower bucket boundary.
|
||
upperRank = rank
|
||
upperSet = true
|
||
}
|
||
if lowerSet && upperSet {
|
||
break
|
||
}
|
||
if !lowerSet && b.Lower < lower && b.Upper > lower {
|
||
// The lower value is in this bucket.
|
||
if h.UsesCustomBuckets() || zeroBucket {
|
||
lowerRank = interpolateLinearly(lower)
|
||
} else {
|
||
lowerRank = interpolateExponentially(lower)
|
||
}
|
||
lowerSet = true
|
||
}
|
||
if !upperSet && b.Lower < upper && b.Upper > upper {
|
||
// The upper value is in this bucket.
|
||
if h.UsesCustomBuckets() || zeroBucket {
|
||
upperRank = interpolateLinearly(upper)
|
||
} else {
|
||
upperRank = interpolateExponentially(upper)
|
||
}
|
||
upperSet = true
|
||
}
|
||
if lowerSet && upperSet {
|
||
break
|
||
}
|
||
rank += b.Count
|
||
}
|
||
if !lowerSet || lowerRank > h.Count {
|
||
lowerRank = h.Count
|
||
}
|
||
if !upperSet || upperRank > h.Count {
|
||
upperRank = h.Count
|
||
}
|
||
|
||
return (upperRank - lowerRank) / h.Count
|
||
}
|
||
|
||
// coalesceBuckets merges buckets with the same upper bound.
|
||
//
|
||
// The input buckets must be sorted.
|
||
func coalesceBuckets(buckets Buckets) Buckets {
|
||
last := buckets[0]
|
||
i := 0
|
||
for _, b := range buckets[1:] {
|
||
if b.UpperBound == last.UpperBound {
|
||
last.Count += b.Count
|
||
} else {
|
||
buckets[i] = last
|
||
last = b
|
||
i++
|
||
}
|
||
}
|
||
buckets[i] = last
|
||
return buckets[:i+1]
|
||
}
|
||
|
||
// The assumption that bucket counts increase monotonically with increasing
|
||
// upperBound may be violated during:
|
||
//
|
||
// - Circumstances where data is already inconsistent at the target's side.
|
||
// - Ingestion via the remote write receiver that Prometheus implements.
|
||
// - Optimisation of query execution where precision is sacrificed for other
|
||
// benefits, not by Prometheus but by systems built on top of it.
|
||
// - Circumstances where floating point precision errors accumulate.
|
||
//
|
||
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||
//
|
||
// bucketQuantile depends on that monotonicity to do a binary search for the
|
||
// bucket with the φ-quantile count, so breaking the monotonicity
|
||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
||
//
|
||
// As a somewhat hacky solution, we first silently ignore any numerically
|
||
// insignificant (relative delta below the requested tolerance and likely to
|
||
// be from floating point precision errors) differences between successive
|
||
// buckets regardless of the direction. Then we calculate the "envelope" of
|
||
// the histogram buckets, essentially removing any decreases in the count
|
||
// between successive buckets.
|
||
//
|
||
// We return a bool to indicate if this monotonicity was forced or not, and
|
||
// another bool to indicate if small deltas were ignored or not.
|
||
func ensureMonotonicAndIgnoreSmallDeltas(buckets Buckets, tolerance float64) (bool, bool) {
|
||
var forcedMonotonic, fixedPrecision bool
|
||
prev := buckets[0].Count
|
||
for i := 1; i < len(buckets); i++ {
|
||
curr := buckets[i].Count // Assumed always positive.
|
||
if curr == prev {
|
||
// No correction needed if the counts are identical between buckets.
|
||
continue
|
||
}
|
||
if almost.Equal(prev, curr, tolerance) {
|
||
// Silently correct numerically insignificant differences from floating
|
||
// point precision errors, regardless of direction.
|
||
// Do not update the 'prev' value as we are ignoring the difference.
|
||
buckets[i].Count = prev
|
||
fixedPrecision = true
|
||
continue
|
||
}
|
||
if curr < prev {
|
||
// Force monotonicity by removing any decreases regardless of magnitude.
|
||
// Do not update the 'prev' value as we are ignoring the decrease.
|
||
buckets[i].Count = prev
|
||
forcedMonotonic = true
|
||
continue
|
||
}
|
||
prev = curr
|
||
}
|
||
return forcedMonotonic, fixedPrecision
|
||
}
|
||
|
||
// quantile calculates the given quantile of a vector of samples.
|
||
//
|
||
// The Vector will be sorted.
|
||
// If 'values' has zero elements, NaN is returned.
|
||
// If q==NaN, NaN is returned.
|
||
// If q<0, -Inf is returned.
|
||
// If q>1, +Inf is returned.
|
||
func quantile(q float64, values vectorByValueHeap) float64 {
|
||
if len(values) == 0 || math.IsNaN(q) {
|
||
return math.NaN()
|
||
}
|
||
if q < 0 {
|
||
return math.Inf(-1)
|
||
}
|
||
if q > 1 {
|
||
return math.Inf(+1)
|
||
}
|
||
sort.Sort(values)
|
||
|
||
n := float64(len(values))
|
||
// When the quantile lies between two samples,
|
||
// we use a weighted average of the two samples.
|
||
rank := q * (n - 1)
|
||
|
||
lowerIndex := math.Max(0, math.Floor(rank))
|
||
upperIndex := math.Min(n-1, lowerIndex+1)
|
||
|
||
weight := rank - math.Floor(rank)
|
||
return values[int(lowerIndex)].F*(1-weight) + values[int(upperIndex)].F*weight
|
||
}
|