mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
944 lines
27 KiB
944 lines
27 KiB
// Copyright 2021 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package chunkenc |
|
|
|
import ( |
|
"encoding/binary" |
|
"math" |
|
|
|
"github.com/prometheus/prometheus/model/histogram" |
|
"github.com/prometheus/prometheus/model/value" |
|
) |
|
|
|
// HistogramChunk holds encoded sample data for a sparse, high-resolution |
|
// histogram. |
|
// |
|
// Each sample has multiple "fields", stored in the following way (raw = store |
|
// number directly, delta = store delta to the previous number, dod = store |
|
// delta of the delta to the previous number, xor = what we do for regular |
|
// sample values): |
|
// |
|
// field → ts count zeroCount sum []posbuckets []negbuckets |
|
// sample 1 raw raw raw raw []raw []raw |
|
// sample 2 delta delta delta xor []delta []delta |
|
// sample >2 dod dod dod xor []dod []dod |
|
type HistogramChunk struct { |
|
b bstream |
|
} |
|
|
|
// NewHistogramChunk returns a new chunk with histogram encoding of the given |
|
// size. |
|
func NewHistogramChunk() *HistogramChunk { |
|
b := make([]byte, 3, 128) |
|
return &HistogramChunk{b: bstream{stream: b, count: 0}} |
|
} |
|
|
|
// Encoding returns the encoding type. |
|
func (c *HistogramChunk) Encoding() Encoding { |
|
return EncHistogram |
|
} |
|
|
|
// Bytes returns the underlying byte slice of the chunk. |
|
func (c *HistogramChunk) Bytes() []byte { |
|
return c.b.bytes() |
|
} |
|
|
|
// NumSamples returns the number of samples in the chunk. |
|
func (c *HistogramChunk) NumSamples() int { |
|
return int(binary.BigEndian.Uint16(c.Bytes())) |
|
} |
|
|
|
// Layout returns the histogram layout. Only call this on chunks that have at |
|
// least one sample. |
|
func (c *HistogramChunk) Layout() ( |
|
schema int32, zeroThreshold float64, |
|
negativeSpans, positiveSpans []histogram.Span, |
|
err error, |
|
) { |
|
if c.NumSamples() == 0 { |
|
panic("HistogramChunk.Layout() called on an empty chunk") |
|
} |
|
b := newBReader(c.Bytes()[2:]) |
|
return readHistogramChunkLayout(&b) |
|
} |
|
|
|
// CounterResetHeader defines the first 2 bits of the chunk header. |
|
type CounterResetHeader byte |
|
|
|
const ( |
|
// CounterReset means there was definitely a counter reset that resulted in this chunk. |
|
CounterReset CounterResetHeader = 0b10000000 |
|
// NotCounterReset means there was definitely no counter reset when cutting this chunk. |
|
NotCounterReset CounterResetHeader = 0b01000000 |
|
// GaugeType means this chunk contains a gauge histogram, where counter resets do not happen. |
|
GaugeType CounterResetHeader = 0b11000000 |
|
// UnknownCounterReset means we cannot say if this chunk was created due to a counter reset or not. |
|
// An explicit counter reset detection needs to happen during query time. |
|
UnknownCounterReset CounterResetHeader = 0b00000000 |
|
) |
|
|
|
// setCounterResetHeader sets the counter reset header of the chunk |
|
// The third byte of the chunk is the counter reset header. |
|
func setCounterResetHeader(h CounterResetHeader, bytes []byte) { |
|
switch h { |
|
case CounterReset, NotCounterReset, GaugeType, UnknownCounterReset: |
|
bytes[2] = (bytes[2] & 0b00111111) | byte(h) |
|
default: |
|
panic("invalid CounterResetHeader type") |
|
} |
|
} |
|
|
|
// SetCounterResetHeader sets the counter reset header. |
|
func (c *HistogramChunk) SetCounterResetHeader(h CounterResetHeader) { |
|
setCounterResetHeader(h, c.Bytes()) |
|
} |
|
|
|
// GetCounterResetHeader returns the info about the first 2 bits of the chunk |
|
// header. |
|
func (c *HistogramChunk) GetCounterResetHeader() CounterResetHeader { |
|
return CounterResetHeader(c.Bytes()[2] & 0b11000000) |
|
} |
|
|
|
// Compact implements the Chunk interface. |
|
func (c *HistogramChunk) Compact() { |
|
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold { |
|
buf := make([]byte, l) |
|
copy(buf, c.b.stream) |
|
c.b.stream = buf |
|
} |
|
} |
|
|
|
// Appender implements the Chunk interface. |
|
func (c *HistogramChunk) Appender() (Appender, error) { |
|
it := c.iterator(nil) |
|
|
|
// To get an appender, we must know the state it would have if we had |
|
// appended all existing data from scratch. We iterate through the end |
|
// and populate via the iterator's state. |
|
for it.Next() == ValHistogram { // nolint:revive |
|
} |
|
if err := it.Err(); err != nil { |
|
return nil, err |
|
} |
|
|
|
a := &HistogramAppender{ |
|
b: &c.b, |
|
|
|
schema: it.schema, |
|
zThreshold: it.zThreshold, |
|
pSpans: it.pSpans, |
|
nSpans: it.nSpans, |
|
t: it.t, |
|
cnt: it.cnt, |
|
zCnt: it.zCnt, |
|
tDelta: it.tDelta, |
|
cntDelta: it.cntDelta, |
|
zCntDelta: it.zCntDelta, |
|
pBuckets: it.pBuckets, |
|
nBuckets: it.nBuckets, |
|
pBucketsDelta: it.pBucketsDelta, |
|
nBucketsDelta: it.nBucketsDelta, |
|
|
|
sum: it.sum, |
|
leading: it.leading, |
|
trailing: it.trailing, |
|
} |
|
if it.numTotal == 0 { |
|
a.leading = 0xff |
|
} |
|
return a, nil |
|
} |
|
|
|
func countSpans(spans []histogram.Span) int { |
|
var cnt int |
|
for _, s := range spans { |
|
cnt += int(s.Length) |
|
} |
|
return cnt |
|
} |
|
|
|
func newHistogramIterator(b []byte) *histogramIterator { |
|
it := &histogramIterator{ |
|
br: newBReader(b), |
|
numTotal: binary.BigEndian.Uint16(b), |
|
t: math.MinInt64, |
|
} |
|
// The first 3 bytes contain chunk headers. |
|
// We skip that for actual samples. |
|
_, _ = it.br.readBits(24) |
|
it.counterResetHeader = CounterResetHeader(b[2] & 0b11000000) |
|
return it |
|
} |
|
|
|
func (c *HistogramChunk) iterator(it Iterator) *histogramIterator { |
|
// This comment is copied from XORChunk.iterator: |
|
// Should iterators guarantee to act on a copy of the data so it doesn't lock append? |
|
// When using striped locks to guard access to chunks, probably yes. |
|
// Could only copy data if the chunk is not completed yet. |
|
if histogramIter, ok := it.(*histogramIterator); ok { |
|
histogramIter.Reset(c.b.bytes()) |
|
return histogramIter |
|
} |
|
return newHistogramIterator(c.b.bytes()) |
|
} |
|
|
|
// Iterator implements the Chunk interface. |
|
func (c *HistogramChunk) Iterator(it Iterator) Iterator { |
|
return c.iterator(it) |
|
} |
|
|
|
// HistogramAppender is an Appender implementation for sparse histograms. |
|
type HistogramAppender struct { |
|
b *bstream |
|
|
|
// Layout: |
|
schema int32 |
|
zThreshold float64 |
|
pSpans, nSpans []histogram.Span |
|
|
|
// Although we intend to start new chunks on counter resets, we still |
|
// have to handle negative deltas for gauge histograms. Therefore, even |
|
// deltas are signed types here (even for tDelta to not treat that one |
|
// specially). |
|
t int64 |
|
cnt, zCnt uint64 |
|
tDelta, cntDelta, zCntDelta int64 |
|
pBuckets, nBuckets []int64 |
|
pBucketsDelta, nBucketsDelta []int64 |
|
|
|
// The sum is Gorilla xor encoded. |
|
sum float64 |
|
leading uint8 |
|
trailing uint8 |
|
} |
|
|
|
func (a *HistogramAppender) GetCounterResetHeader() CounterResetHeader { |
|
return CounterResetHeader(a.b.bytes()[2] & 0b11000000) |
|
} |
|
|
|
func (a *HistogramAppender) NumSamples() int { |
|
return int(binary.BigEndian.Uint16(a.b.bytes())) |
|
} |
|
|
|
// Append implements Appender. This implementation panics because normal float |
|
// samples must never be appended to a histogram chunk. |
|
func (a *HistogramAppender) Append(int64, float64) { |
|
panic("appended a float sample to a histogram chunk") |
|
} |
|
|
|
// AppendFloatHistogram implements Appender. This implementation panics because float |
|
// histogram samples must never be appended to a histogram chunk. |
|
func (a *HistogramAppender) AppendFloatHistogram(int64, *histogram.FloatHistogram) { |
|
panic("appended a float histogram to a histogram chunk") |
|
} |
|
|
|
// Appendable returns whether the chunk can be appended to, and if so whether |
|
// any recoding needs to happen using the provided inserts (in case of any new |
|
// buckets, positive or negative range, respectively). If the sample is a gauge |
|
// histogram, AppendableGauge must be used instead. |
|
// |
|
// The chunk is not appendable in the following cases: |
|
// |
|
// - The schema has changed. |
|
// - The threshold for the zero bucket has changed. |
|
// - Any buckets have disappeared. |
|
// - There was a counter reset in the count of observations or in any bucket, |
|
// including the zero bucket. |
|
// - The last sample in the chunk was stale while the current sample is not stale. |
|
// |
|
// The method returns an additional boolean set to true if it is not appendable |
|
// because of a counter reset. If the given sample is stale, it is always ok to |
|
// append. If counterReset is true, okToAppend is always false. |
|
func (a *HistogramAppender) Appendable(h *histogram.Histogram) ( |
|
positiveInserts, negativeInserts []Insert, |
|
okToAppend, counterReset bool, |
|
) { |
|
if a.NumSamples() > 0 && a.GetCounterResetHeader() == GaugeType { |
|
return |
|
} |
|
if value.IsStaleNaN(h.Sum) { |
|
// This is a stale sample whose buckets and spans don't matter. |
|
okToAppend = true |
|
return |
|
} |
|
if value.IsStaleNaN(a.sum) { |
|
// If the last sample was stale, then we can only accept stale |
|
// samples in this chunk. |
|
return |
|
} |
|
|
|
if h.Count < a.cnt { |
|
// There has been a counter reset. |
|
counterReset = true |
|
return |
|
} |
|
|
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { |
|
return |
|
} |
|
|
|
if h.ZeroCount < a.zCnt { |
|
// There has been a counter reset since ZeroThreshold didn't change. |
|
counterReset = true |
|
return |
|
} |
|
|
|
var ok bool |
|
positiveInserts, ok = expandSpansForward(a.pSpans, h.PositiveSpans) |
|
if !ok { |
|
counterReset = true |
|
return |
|
} |
|
negativeInserts, ok = expandSpansForward(a.nSpans, h.NegativeSpans) |
|
if !ok { |
|
counterReset = true |
|
return |
|
} |
|
|
|
if counterResetInAnyBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) || |
|
counterResetInAnyBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) { |
|
counterReset, positiveInserts, negativeInserts = true, nil, nil |
|
return |
|
} |
|
|
|
okToAppend = true |
|
return |
|
} |
|
|
|
// AppendableGauge returns whether the chunk can be appended to, and if so |
|
// whether: |
|
// 1. Any recoding needs to happen to the chunk using the provided inserts |
|
// (in case of any new buckets, positive or negative range, respectively). |
|
// 2. Any recoding needs to happen for the histogram being appended, using the |
|
// backward inserts (in case of any missing buckets, positive or negative |
|
// range, respectively). |
|
// |
|
// This method must be only used for gauge histograms. |
|
// |
|
// The chunk is not appendable in the following cases: |
|
// - The schema has changed. |
|
// - The threshold for the zero bucket has changed. |
|
// - The last sample in the chunk was stale while the current sample is not stale. |
|
func (a *HistogramAppender) AppendableGauge(h *histogram.Histogram) ( |
|
positiveInserts, negativeInserts []Insert, |
|
backwardPositiveInserts, backwardNegativeInserts []Insert, |
|
positiveSpans, negativeSpans []histogram.Span, |
|
okToAppend bool, |
|
) { |
|
if a.NumSamples() > 0 && a.GetCounterResetHeader() != GaugeType { |
|
return |
|
} |
|
if value.IsStaleNaN(h.Sum) { |
|
// This is a stale sample whose buckets and spans don't matter. |
|
okToAppend = true |
|
return |
|
} |
|
if value.IsStaleNaN(a.sum) { |
|
// If the last sample was stale, then we can only accept stale |
|
// samples in this chunk. |
|
return |
|
} |
|
|
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { |
|
return |
|
} |
|
|
|
positiveInserts, backwardPositiveInserts, positiveSpans = expandSpansBothWays(a.pSpans, h.PositiveSpans) |
|
negativeInserts, backwardNegativeInserts, negativeSpans = expandSpansBothWays(a.nSpans, h.NegativeSpans) |
|
okToAppend = true |
|
return |
|
} |
|
|
|
// counterResetInAnyBucket returns true if there was a counter reset for any |
|
// bucket. This should be called only when the bucket layout is the same or new |
|
// buckets were added. It does not handle the case of buckets missing. |
|
func counterResetInAnyBucket(oldBuckets, newBuckets []int64, oldSpans, newSpans []histogram.Span) bool { |
|
if len(oldSpans) == 0 || len(oldBuckets) == 0 { |
|
return false |
|
} |
|
|
|
oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices. |
|
oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span. |
|
oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset |
|
|
|
oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice. |
|
oldVal, newVal := oldBuckets[0], newBuckets[0] |
|
|
|
// Since we assume that new spans won't have missing buckets, there will never be a case |
|
// where the old index will not find a matching new index. |
|
for { |
|
if oldIdx == newIdx { |
|
if newVal < oldVal { |
|
return true |
|
} |
|
} |
|
|
|
if oldIdx <= newIdx { |
|
// Moving ahead old bucket and span by 1 index. |
|
if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 { |
|
// Current span is over. |
|
oldSpanSliceIdx++ |
|
oldInsideSpanIdx = 0 |
|
if oldSpanSliceIdx >= len(oldSpans) { |
|
// All old spans are over. |
|
break |
|
} |
|
oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset |
|
} else { |
|
oldInsideSpanIdx++ |
|
oldIdx++ |
|
} |
|
oldBucketSliceIdx++ |
|
oldVal += oldBuckets[oldBucketSliceIdx] |
|
} |
|
|
|
if oldIdx > newIdx { |
|
// Moving ahead new bucket and span by 1 index. |
|
if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 { |
|
// Current span is over. |
|
newSpanSliceIdx++ |
|
newInsideSpanIdx = 0 |
|
if newSpanSliceIdx >= len(newSpans) { |
|
// All new spans are over. |
|
// This should not happen, old spans above should catch this first. |
|
panic("new spans over before old spans in counterReset") |
|
} |
|
newIdx += 1 + newSpans[newSpanSliceIdx].Offset |
|
} else { |
|
newInsideSpanIdx++ |
|
newIdx++ |
|
} |
|
newBucketSliceIdx++ |
|
newVal += newBuckets[newBucketSliceIdx] |
|
} |
|
} |
|
|
|
return false |
|
} |
|
|
|
// AppendHistogram appends a histogram to the chunk. The caller must ensure that |
|
// the histogram is properly structured, e.g. the number of buckets used |
|
// corresponds to the number conveyed by the span structures. First call |
|
// Appendable() and act accordingly! |
|
func (a *HistogramAppender) AppendHistogram(t int64, h *histogram.Histogram) { |
|
var tDelta, cntDelta, zCntDelta int64 |
|
num := binary.BigEndian.Uint16(a.b.bytes()) |
|
|
|
if value.IsStaleNaN(h.Sum) { |
|
// Emptying out other fields to write no buckets, and an empty |
|
// layout in case of first histogram in the chunk. |
|
h = &histogram.Histogram{Sum: h.Sum} |
|
} |
|
|
|
if num == 0 { |
|
// The first append gets the privilege to dictate the layout |
|
// but it's also responsible for encoding it into the chunk! |
|
writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans) |
|
a.schema = h.Schema |
|
a.zThreshold = h.ZeroThreshold |
|
|
|
if len(h.PositiveSpans) > 0 { |
|
a.pSpans = make([]histogram.Span, len(h.PositiveSpans)) |
|
copy(a.pSpans, h.PositiveSpans) |
|
} else { |
|
a.pSpans = nil |
|
} |
|
if len(h.NegativeSpans) > 0 { |
|
a.nSpans = make([]histogram.Span, len(h.NegativeSpans)) |
|
copy(a.nSpans, h.NegativeSpans) |
|
} else { |
|
a.nSpans = nil |
|
} |
|
|
|
numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans) |
|
if numPBuckets > 0 { |
|
a.pBuckets = make([]int64, numPBuckets) |
|
a.pBucketsDelta = make([]int64, numPBuckets) |
|
} else { |
|
a.pBuckets = nil |
|
a.pBucketsDelta = nil |
|
} |
|
if numNBuckets > 0 { |
|
a.nBuckets = make([]int64, numNBuckets) |
|
a.nBucketsDelta = make([]int64, numNBuckets) |
|
} else { |
|
a.nBuckets = nil |
|
a.nBucketsDelta = nil |
|
} |
|
|
|
// Now store the actual data. |
|
putVarbitInt(a.b, t) |
|
putVarbitUint(a.b, h.Count) |
|
putVarbitUint(a.b, h.ZeroCount) |
|
a.b.writeBits(math.Float64bits(h.Sum), 64) |
|
for _, b := range h.PositiveBuckets { |
|
putVarbitInt(a.b, b) |
|
} |
|
for _, b := range h.NegativeBuckets { |
|
putVarbitInt(a.b, b) |
|
} |
|
} else { |
|
// The case for the 2nd sample with single deltas is implicitly |
|
// handled correctly with the double delta code, so we don't |
|
// need a separate single delta logic for the 2nd sample. |
|
|
|
tDelta = t - a.t |
|
cntDelta = int64(h.Count) - int64(a.cnt) |
|
zCntDelta = int64(h.ZeroCount) - int64(a.zCnt) |
|
|
|
tDod := tDelta - a.tDelta |
|
cntDod := cntDelta - a.cntDelta |
|
zCntDod := zCntDelta - a.zCntDelta |
|
|
|
if value.IsStaleNaN(h.Sum) { |
|
cntDod, zCntDod = 0, 0 |
|
} |
|
|
|
putVarbitInt(a.b, tDod) |
|
putVarbitInt(a.b, cntDod) |
|
putVarbitInt(a.b, zCntDod) |
|
|
|
a.writeSumDelta(h.Sum) |
|
|
|
for i, b := range h.PositiveBuckets { |
|
delta := b - a.pBuckets[i] |
|
dod := delta - a.pBucketsDelta[i] |
|
putVarbitInt(a.b, dod) |
|
a.pBucketsDelta[i] = delta |
|
} |
|
for i, b := range h.NegativeBuckets { |
|
delta := b - a.nBuckets[i] |
|
dod := delta - a.nBucketsDelta[i] |
|
putVarbitInt(a.b, dod) |
|
a.nBucketsDelta[i] = delta |
|
} |
|
} |
|
|
|
binary.BigEndian.PutUint16(a.b.bytes(), num+1) |
|
|
|
a.t = t |
|
a.cnt = h.Count |
|
a.zCnt = h.ZeroCount |
|
a.tDelta = tDelta |
|
a.cntDelta = cntDelta |
|
a.zCntDelta = zCntDelta |
|
|
|
copy(a.pBuckets, h.PositiveBuckets) |
|
copy(a.nBuckets, h.NegativeBuckets) |
|
// Note that the bucket deltas were already updated above. |
|
a.sum = h.Sum |
|
} |
|
|
|
// Recode converts the current chunk to accommodate an expansion of the set of |
|
// (positive and/or negative) buckets used, according to the provided inserts, |
|
// resulting in the honoring of the provided new positive and negative spans. To |
|
// continue appending, use the returned Appender rather than the receiver of |
|
// this method. |
|
func (a *HistogramAppender) Recode( |
|
positiveInserts, negativeInserts []Insert, |
|
positiveSpans, negativeSpans []histogram.Span, |
|
) (Chunk, Appender) { |
|
// TODO(beorn7): This currently just decodes everything and then encodes |
|
// it again with the new span layout. This can probably be done in-place |
|
// by editing the chunk. But let's first see how expensive it is in the |
|
// big picture. Also, in-place editing might create concurrency issues. |
|
byts := a.b.bytes() |
|
it := newHistogramIterator(byts) |
|
hc := NewHistogramChunk() |
|
app, err := hc.Appender() |
|
if err != nil { |
|
panic(err) |
|
} |
|
numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans) |
|
|
|
for it.Next() == ValHistogram { |
|
tOld, hOld := it.AtHistogram() |
|
|
|
// We have to newly allocate slices for the modified buckets |
|
// here because they are kept by the appender until the next |
|
// append. |
|
// TODO(beorn7): We might be able to optimize this. |
|
var positiveBuckets, negativeBuckets []int64 |
|
if numPositiveBuckets > 0 { |
|
positiveBuckets = make([]int64, numPositiveBuckets) |
|
} |
|
if numNegativeBuckets > 0 { |
|
negativeBuckets = make([]int64, numNegativeBuckets) |
|
} |
|
|
|
// Save the modified histogram to the new chunk. |
|
hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans |
|
if len(positiveInserts) > 0 { |
|
hOld.PositiveBuckets = insert(hOld.PositiveBuckets, positiveBuckets, positiveInserts, true) |
|
} |
|
if len(negativeInserts) > 0 { |
|
hOld.NegativeBuckets = insert(hOld.NegativeBuckets, negativeBuckets, negativeInserts, true) |
|
} |
|
app.AppendHistogram(tOld, hOld) |
|
} |
|
|
|
hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000)) |
|
return hc, app |
|
} |
|
|
|
// RecodeHistogram converts the current histogram (in-place) to accommodate an |
|
// expansion of the set of (positive and/or negative) buckets used. |
|
func (a *HistogramAppender) RecodeHistogram( |
|
h *histogram.Histogram, |
|
pBackwardInserts, nBackwardInserts []Insert, |
|
) { |
|
if len(pBackwardInserts) > 0 { |
|
numPositiveBuckets := countSpans(h.PositiveSpans) |
|
h.PositiveBuckets = insert(h.PositiveBuckets, make([]int64, numPositiveBuckets), pBackwardInserts, true) |
|
} |
|
if len(nBackwardInserts) > 0 { |
|
numNegativeBuckets := countSpans(h.NegativeSpans) |
|
h.NegativeBuckets = insert(h.NegativeBuckets, make([]int64, numNegativeBuckets), nBackwardInserts, true) |
|
} |
|
} |
|
|
|
func (a *HistogramAppender) writeSumDelta(v float64) { |
|
xorWrite(a.b, v, a.sum, &a.leading, &a.trailing) |
|
} |
|
|
|
type histogramIterator struct { |
|
br bstreamReader |
|
numTotal uint16 |
|
numRead uint16 |
|
|
|
counterResetHeader CounterResetHeader |
|
|
|
// Layout: |
|
schema int32 |
|
zThreshold float64 |
|
pSpans, nSpans []histogram.Span |
|
|
|
// For the fields that are tracked as deltas and ultimately dod's. |
|
t int64 |
|
cnt, zCnt uint64 |
|
tDelta, cntDelta, zCntDelta int64 |
|
pBuckets, nBuckets []int64 // Delta between buckets. |
|
pFloatBuckets, nFloatBuckets []float64 // Absolute counts. |
|
pBucketsDelta, nBucketsDelta []int64 |
|
|
|
// The sum is Gorilla xor encoded. |
|
sum float64 |
|
leading uint8 |
|
trailing uint8 |
|
|
|
// Track calls to retrieve methods. Once they have been called, we |
|
// cannot recycle the bucket slices anymore because we have returned |
|
// them in the histogram. |
|
atHistogramCalled, atFloatHistogramCalled bool |
|
|
|
err error |
|
} |
|
|
|
func (it *histogramIterator) Seek(t int64) ValueType { |
|
if it.err != nil { |
|
return ValNone |
|
} |
|
|
|
for t > it.t || it.numRead == 0 { |
|
if it.Next() == ValNone { |
|
return ValNone |
|
} |
|
} |
|
return ValHistogram |
|
} |
|
|
|
func (it *histogramIterator) At() (int64, float64) { |
|
panic("cannot call histogramIterator.At") |
|
} |
|
|
|
func (it *histogramIterator) AtHistogram() (int64, *histogram.Histogram) { |
|
if value.IsStaleNaN(it.sum) { |
|
return it.t, &histogram.Histogram{Sum: it.sum} |
|
} |
|
it.atHistogramCalled = true |
|
return it.t, &histogram.Histogram{ |
|
CounterResetHint: counterResetHint(it.counterResetHeader, it.numRead), |
|
Count: it.cnt, |
|
ZeroCount: it.zCnt, |
|
Sum: it.sum, |
|
ZeroThreshold: it.zThreshold, |
|
Schema: it.schema, |
|
PositiveSpans: it.pSpans, |
|
NegativeSpans: it.nSpans, |
|
PositiveBuckets: it.pBuckets, |
|
NegativeBuckets: it.nBuckets, |
|
} |
|
} |
|
|
|
func (it *histogramIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { |
|
if value.IsStaleNaN(it.sum) { |
|
return it.t, &histogram.FloatHistogram{Sum: it.sum} |
|
} |
|
it.atFloatHistogramCalled = true |
|
return it.t, &histogram.FloatHistogram{ |
|
CounterResetHint: counterResetHint(it.counterResetHeader, it.numRead), |
|
Count: float64(it.cnt), |
|
ZeroCount: float64(it.zCnt), |
|
Sum: it.sum, |
|
ZeroThreshold: it.zThreshold, |
|
Schema: it.schema, |
|
PositiveSpans: it.pSpans, |
|
NegativeSpans: it.nSpans, |
|
PositiveBuckets: it.pFloatBuckets, |
|
NegativeBuckets: it.nFloatBuckets, |
|
} |
|
} |
|
|
|
func (it *histogramIterator) AtT() int64 { |
|
return it.t |
|
} |
|
|
|
func (it *histogramIterator) Err() error { |
|
return it.err |
|
} |
|
|
|
func (it *histogramIterator) Reset(b []byte) { |
|
// The first 3 bytes contain chunk headers. |
|
// We skip that for actual samples. |
|
it.br = newBReader(b[3:]) |
|
it.numTotal = binary.BigEndian.Uint16(b) |
|
it.numRead = 0 |
|
|
|
it.counterResetHeader = CounterResetHeader(b[2] & 0b11000000) |
|
|
|
it.t, it.cnt, it.zCnt = 0, 0, 0 |
|
it.tDelta, it.cntDelta, it.zCntDelta = 0, 0, 0 |
|
|
|
// Recycle slices that have not been returned yet. Otherwise, start from |
|
// scratch. |
|
if it.atHistogramCalled { |
|
it.atHistogramCalled = false |
|
it.pBuckets, it.nBuckets = nil, nil |
|
} else { |
|
it.pBuckets = it.pBuckets[:0] |
|
it.nBuckets = it.nBuckets[:0] |
|
} |
|
if it.atFloatHistogramCalled { |
|
it.atFloatHistogramCalled = false |
|
it.pFloatBuckets, it.nFloatBuckets = nil, nil |
|
} else { |
|
it.pFloatBuckets = it.pFloatBuckets[:0] |
|
it.nFloatBuckets = it.nFloatBuckets[:0] |
|
} |
|
|
|
it.pBucketsDelta = it.pBucketsDelta[:0] |
|
it.nBucketsDelta = it.nBucketsDelta[:0] |
|
|
|
it.sum = 0 |
|
it.leading = 0 |
|
it.trailing = 0 |
|
it.err = nil |
|
} |
|
|
|
func (it *histogramIterator) Next() ValueType { |
|
if it.err != nil || it.numRead == it.numTotal { |
|
return ValNone |
|
} |
|
|
|
if it.numRead == 0 { |
|
// The first read is responsible for reading the chunk layout |
|
// and for initializing fields that depend on it. We give |
|
// counter reset info at chunk level, hence we discard it here. |
|
schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.schema = schema |
|
it.zThreshold = zeroThreshold |
|
it.pSpans, it.nSpans = posSpans, negSpans |
|
numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans) |
|
// The code below recycles existing slices in case this iterator |
|
// was reset and already has slices of a sufficient capacity. |
|
if numPBuckets > 0 { |
|
it.pBuckets = append(it.pBuckets, make([]int64, numPBuckets)...) |
|
it.pBucketsDelta = append(it.pBucketsDelta, make([]int64, numPBuckets)...) |
|
it.pFloatBuckets = append(it.pFloatBuckets, make([]float64, numPBuckets)...) |
|
} |
|
if numNBuckets > 0 { |
|
it.nBuckets = append(it.nBuckets, make([]int64, numNBuckets)...) |
|
it.nBucketsDelta = append(it.nBucketsDelta, make([]int64, numNBuckets)...) |
|
it.nFloatBuckets = append(it.nFloatBuckets, make([]float64, numNBuckets)...) |
|
} |
|
|
|
// Now read the actual data. |
|
t, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.t = t |
|
|
|
cnt, err := readVarbitUint(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.cnt = cnt |
|
|
|
zcnt, err := readVarbitUint(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.zCnt = zcnt |
|
|
|
sum, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.sum = math.Float64frombits(sum) |
|
|
|
var current int64 |
|
for i := range it.pBuckets { |
|
v, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.pBuckets[i] = v |
|
current += it.pBuckets[i] |
|
it.pFloatBuckets[i] = float64(current) |
|
} |
|
current = 0 |
|
for i := range it.nBuckets { |
|
v, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.nBuckets[i] = v |
|
current += it.nBuckets[i] |
|
it.nFloatBuckets[i] = float64(current) |
|
} |
|
|
|
it.numRead++ |
|
return ValHistogram |
|
} |
|
|
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, |
|
// so we don't need a separate single delta logic for the 2nd sample. |
|
|
|
// Recycle bucket slices that have not been returned yet. Otherwise, |
|
// copy them. |
|
if it.atHistogramCalled { |
|
it.atHistogramCalled = false |
|
if len(it.pBuckets) > 0 { |
|
newBuckets := make([]int64, len(it.pBuckets)) |
|
copy(newBuckets, it.pBuckets) |
|
it.pBuckets = newBuckets |
|
} else { |
|
it.pBuckets = nil |
|
} |
|
if len(it.nBuckets) > 0 { |
|
newBuckets := make([]int64, len(it.nBuckets)) |
|
copy(newBuckets, it.nBuckets) |
|
it.nBuckets = newBuckets |
|
} else { |
|
it.nBuckets = nil |
|
} |
|
} |
|
// FloatBuckets are set from scratch, so simply create empty ones. |
|
if it.atFloatHistogramCalled { |
|
it.atFloatHistogramCalled = false |
|
if len(it.pFloatBuckets) > 0 { |
|
it.pFloatBuckets = make([]float64, len(it.pFloatBuckets)) |
|
} else { |
|
it.pFloatBuckets = nil |
|
} |
|
if len(it.nFloatBuckets) > 0 { |
|
it.nFloatBuckets = make([]float64, len(it.nFloatBuckets)) |
|
} else { |
|
it.nFloatBuckets = nil |
|
} |
|
} |
|
|
|
tDod, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.tDelta += tDod |
|
it.t += it.tDelta |
|
|
|
cntDod, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.cntDelta += cntDod |
|
it.cnt = uint64(int64(it.cnt) + it.cntDelta) |
|
|
|
zcntDod, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.zCntDelta += zcntDod |
|
it.zCnt = uint64(int64(it.zCnt) + it.zCntDelta) |
|
|
|
ok := it.readSum() |
|
if !ok { |
|
return ValNone |
|
} |
|
|
|
if value.IsStaleNaN(it.sum) { |
|
it.numRead++ |
|
return ValHistogram |
|
} |
|
|
|
var current int64 |
|
for i := range it.pBuckets { |
|
dod, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.pBucketsDelta[i] += dod |
|
it.pBuckets[i] += it.pBucketsDelta[i] |
|
current += it.pBuckets[i] |
|
it.pFloatBuckets[i] = float64(current) |
|
} |
|
|
|
current = 0 |
|
for i := range it.nBuckets { |
|
dod, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.nBucketsDelta[i] += dod |
|
it.nBuckets[i] += it.nBucketsDelta[i] |
|
current += it.nBuckets[i] |
|
it.nFloatBuckets[i] = float64(current) |
|
} |
|
|
|
it.numRead++ |
|
return ValHistogram |
|
} |
|
|
|
func (it *histogramIterator) readSum() bool { |
|
err := xorRead(&it.br, &it.sum, &it.leading, &it.trailing) |
|
if err != nil { |
|
it.err = err |
|
return false |
|
} |
|
return true |
|
}
|
|
|