mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
831 lines
25 KiB
831 lines
25 KiB
// Copyright 2022 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package chunkenc |
|
|
|
import ( |
|
"encoding/binary" |
|
"math" |
|
|
|
"github.com/prometheus/prometheus/model/histogram" |
|
"github.com/prometheus/prometheus/model/value" |
|
) |
|
|
|
// FloatHistogramChunk holds encoded sample data for a sparse, high-resolution |
|
// float histogram. |
|
// |
|
// Each sample has multiple "fields", stored in the following way (raw = store |
|
// number directly, delta = store delta to the previous number, dod = store |
|
// delta of the delta to the previous number, xor = what we do for regular |
|
// sample values): |
|
// |
|
// field → ts count zeroCount sum []posbuckets []negbuckets |
|
// sample 1 raw raw raw raw []raw []raw |
|
// sample 2 delta xor xor xor []xor []xor |
|
// sample >2 dod xor xor xor []xor []xor |
|
type FloatHistogramChunk struct { |
|
b bstream |
|
} |
|
|
|
// NewFloatHistogramChunk returns a new chunk with float histogram encoding. |
|
func NewFloatHistogramChunk() *FloatHistogramChunk { |
|
b := make([]byte, 3, 128) |
|
return &FloatHistogramChunk{b: bstream{stream: b, count: 0}} |
|
} |
|
|
|
// xorValue holds all the necessary information to encode |
|
// and decode XOR encoded float64 values. |
|
type xorValue struct { |
|
value float64 |
|
leading uint8 |
|
trailing uint8 |
|
} |
|
|
|
// Encoding returns the encoding type. |
|
func (c *FloatHistogramChunk) Encoding() Encoding { |
|
return EncFloatHistogram |
|
} |
|
|
|
// Bytes returns the underlying byte slice of the chunk. |
|
func (c *FloatHistogramChunk) Bytes() []byte { |
|
return c.b.bytes() |
|
} |
|
|
|
// NumSamples returns the number of samples in the chunk. |
|
func (c *FloatHistogramChunk) NumSamples() int { |
|
return int(binary.BigEndian.Uint16(c.Bytes())) |
|
} |
|
|
|
// Layout returns the histogram layout. Only call this on chunks that have at |
|
// least one sample. |
|
func (c *FloatHistogramChunk) Layout() ( |
|
schema int32, zeroThreshold float64, |
|
negativeSpans, positiveSpans []histogram.Span, |
|
err error, |
|
) { |
|
if c.NumSamples() == 0 { |
|
panic("FloatHistogramChunk.Layout() called on an empty chunk") |
|
} |
|
b := newBReader(c.Bytes()[2:]) |
|
return readHistogramChunkLayout(&b) |
|
} |
|
|
|
// SetCounterResetHeader sets the counter reset header. |
|
func (c *FloatHistogramChunk) SetCounterResetHeader(h CounterResetHeader) { |
|
setCounterResetHeader(h, c.Bytes()) |
|
} |
|
|
|
// GetCounterResetHeader returns the info about the first 2 bits of the chunk |
|
// header. |
|
func (c *FloatHistogramChunk) GetCounterResetHeader() CounterResetHeader { |
|
return CounterResetHeader(c.Bytes()[2] & 0b11000000) |
|
} |
|
|
|
// Compact implements the Chunk interface. |
|
func (c *FloatHistogramChunk) Compact() { |
|
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold { |
|
buf := make([]byte, l) |
|
copy(buf, c.b.stream) |
|
c.b.stream = buf |
|
} |
|
} |
|
|
|
// Appender implements the Chunk interface. |
|
func (c *FloatHistogramChunk) Appender() (Appender, error) { |
|
it := c.iterator(nil) |
|
|
|
// To get an appender, we must know the state it would have if we had |
|
// appended all existing data from scratch. We iterate through the end |
|
// and populate via the iterator's state. |
|
for it.Next() == ValFloatHistogram { // nolint:revive |
|
} |
|
if err := it.Err(); err != nil { |
|
return nil, err |
|
} |
|
|
|
pBuckets := make([]xorValue, len(it.pBuckets)) |
|
for i := 0; i < len(it.pBuckets); i++ { |
|
pBuckets[i] = xorValue{ |
|
value: it.pBuckets[i], |
|
leading: it.pBucketsLeading[i], |
|
trailing: it.pBucketsTrailing[i], |
|
} |
|
} |
|
nBuckets := make([]xorValue, len(it.nBuckets)) |
|
for i := 0; i < len(it.nBuckets); i++ { |
|
nBuckets[i] = xorValue{ |
|
value: it.nBuckets[i], |
|
leading: it.nBucketsLeading[i], |
|
trailing: it.nBucketsTrailing[i], |
|
} |
|
} |
|
|
|
a := &FloatHistogramAppender{ |
|
b: &c.b, |
|
|
|
schema: it.schema, |
|
zThreshold: it.zThreshold, |
|
pSpans: it.pSpans, |
|
nSpans: it.nSpans, |
|
t: it.t, |
|
tDelta: it.tDelta, |
|
cnt: it.cnt, |
|
zCnt: it.zCnt, |
|
pBuckets: pBuckets, |
|
nBuckets: nBuckets, |
|
sum: it.sum, |
|
} |
|
if it.numTotal == 0 { |
|
a.sum.leading = 0xff |
|
a.cnt.leading = 0xff |
|
a.zCnt.leading = 0xff |
|
} |
|
return a, nil |
|
} |
|
|
|
func (c *FloatHistogramChunk) iterator(it Iterator) *floatHistogramIterator { |
|
// This comment is copied from XORChunk.iterator: |
|
// Should iterators guarantee to act on a copy of the data so it doesn't lock append? |
|
// When using striped locks to guard access to chunks, probably yes. |
|
// Could only copy data if the chunk is not completed yet. |
|
if histogramIter, ok := it.(*floatHistogramIterator); ok { |
|
histogramIter.Reset(c.b.bytes()) |
|
return histogramIter |
|
} |
|
return newFloatHistogramIterator(c.b.bytes()) |
|
} |
|
|
|
func newFloatHistogramIterator(b []byte) *floatHistogramIterator { |
|
it := &floatHistogramIterator{ |
|
br: newBReader(b), |
|
numTotal: binary.BigEndian.Uint16(b), |
|
t: math.MinInt64, |
|
} |
|
// The first 3 bytes contain chunk headers. |
|
// We skip that for actual samples. |
|
_, _ = it.br.readBits(24) |
|
it.counterResetHeader = CounterResetHeader(b[2] & 0b11000000) |
|
return it |
|
} |
|
|
|
// Iterator implements the Chunk interface. |
|
func (c *FloatHistogramChunk) Iterator(it Iterator) Iterator { |
|
return c.iterator(it) |
|
} |
|
|
|
// FloatHistogramAppender is an Appender implementation for float histograms. |
|
type FloatHistogramAppender struct { |
|
b *bstream |
|
|
|
// Layout: |
|
schema int32 |
|
zThreshold float64 |
|
pSpans, nSpans []histogram.Span |
|
|
|
t, tDelta int64 |
|
sum, cnt, zCnt xorValue |
|
pBuckets, nBuckets []xorValue |
|
} |
|
|
|
func (a *FloatHistogramAppender) GetCounterResetHeader() CounterResetHeader { |
|
return CounterResetHeader(a.b.bytes()[2] & 0b11000000) |
|
} |
|
|
|
func (a *FloatHistogramAppender) NumSamples() int { |
|
return int(binary.BigEndian.Uint16(a.b.bytes())) |
|
} |
|
|
|
// Append implements Appender. This implementation panics because normal float |
|
// samples must never be appended to a histogram chunk. |
|
func (a *FloatHistogramAppender) Append(int64, float64) { |
|
panic("appended a float sample to a histogram chunk") |
|
} |
|
|
|
// AppendHistogram implements Appender. This implementation panics because integer |
|
// histogram samples must never be appended to a float histogram chunk. |
|
func (a *FloatHistogramAppender) AppendHistogram(int64, *histogram.Histogram) { |
|
panic("appended an integer histogram to a float histogram chunk") |
|
} |
|
|
|
// Appendable returns whether the chunk can be appended to, and if so whether |
|
// any recoding needs to happen using the provided inserts (in case of any new |
|
// buckets, positive or negative range, respectively). If the sample is a gauge |
|
// histogram, AppendableGauge must be used instead. |
|
// |
|
// The chunk is not appendable in the following cases: |
|
// - The schema has changed. |
|
// - The threshold for the zero bucket has changed. |
|
// - Any buckets have disappeared. |
|
// - There was a counter reset in the count of observations or in any bucket, including the zero bucket. |
|
// - The last sample in the chunk was stale while the current sample is not stale. |
|
// |
|
// The method returns an additional boolean set to true if it is not appendable |
|
// because of a counter reset. If the given sample is stale, it is always ok to |
|
// append. If counterReset is true, okToAppend is always false. |
|
func (a *FloatHistogramAppender) Appendable(h *histogram.FloatHistogram) ( |
|
positiveInserts, negativeInserts []Insert, |
|
okToAppend, counterReset bool, |
|
) { |
|
if a.NumSamples() > 0 && a.GetCounterResetHeader() == GaugeType { |
|
return |
|
} |
|
if value.IsStaleNaN(h.Sum) { |
|
// This is a stale sample whose buckets and spans don't matter. |
|
okToAppend = true |
|
return |
|
} |
|
if value.IsStaleNaN(a.sum.value) { |
|
// If the last sample was stale, then we can only accept stale |
|
// samples in this chunk. |
|
return |
|
} |
|
|
|
if h.Count < a.cnt.value { |
|
// There has been a counter reset. |
|
counterReset = true |
|
return |
|
} |
|
|
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { |
|
return |
|
} |
|
|
|
if h.ZeroCount < a.zCnt.value { |
|
// There has been a counter reset since ZeroThreshold didn't change. |
|
counterReset = true |
|
return |
|
} |
|
|
|
var ok bool |
|
positiveInserts, ok = expandSpansForward(a.pSpans, h.PositiveSpans) |
|
if !ok { |
|
counterReset = true |
|
return |
|
} |
|
negativeInserts, ok = expandSpansForward(a.nSpans, h.NegativeSpans) |
|
if !ok { |
|
counterReset = true |
|
return |
|
} |
|
|
|
if counterResetInAnyFloatBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) || |
|
counterResetInAnyFloatBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) { |
|
counterReset, positiveInserts, negativeInserts = true, nil, nil |
|
return |
|
} |
|
|
|
okToAppend = true |
|
return |
|
} |
|
|
|
// AppendableGauge returns whether the chunk can be appended to, and if so |
|
// whether: |
|
// 1. Any recoding needs to happen to the chunk using the provided inserts |
|
// (in case of any new buckets, positive or negative range, respectively). |
|
// 2. Any recoding needs to happen for the histogram being appended, using the |
|
// backward inserts (in case of any missing buckets, positive or negative |
|
// range, respectively). |
|
// |
|
// This method must be only used for gauge histograms. |
|
// |
|
// The chunk is not appendable in the following cases: |
|
// - The schema has changed. |
|
// - The threshold for the zero bucket has changed. |
|
// - The last sample in the chunk was stale while the current sample is not stale. |
|
func (a *FloatHistogramAppender) AppendableGauge(h *histogram.FloatHistogram) ( |
|
positiveInserts, negativeInserts []Insert, |
|
backwardPositiveInserts, backwardNegativeInserts []Insert, |
|
positiveSpans, negativeSpans []histogram.Span, |
|
okToAppend bool, |
|
) { |
|
if a.NumSamples() > 0 && a.GetCounterResetHeader() != GaugeType { |
|
return |
|
} |
|
if value.IsStaleNaN(h.Sum) { |
|
// This is a stale sample whose buckets and spans don't matter. |
|
okToAppend = true |
|
return |
|
} |
|
if value.IsStaleNaN(a.sum.value) { |
|
// If the last sample was stale, then we can only accept stale |
|
// samples in this chunk. |
|
return |
|
} |
|
|
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { |
|
return |
|
} |
|
|
|
positiveInserts, backwardPositiveInserts, positiveSpans = expandSpansBothWays(a.pSpans, h.PositiveSpans) |
|
negativeInserts, backwardNegativeInserts, negativeSpans = expandSpansBothWays(a.nSpans, h.NegativeSpans) |
|
okToAppend = true |
|
return |
|
} |
|
|
|
// counterResetInAnyFloatBucket returns true if there was a counter reset for any |
|
// bucket. This should be called only when the bucket layout is the same or new |
|
// buckets were added. It does not handle the case of buckets missing. |
|
func counterResetInAnyFloatBucket(oldBuckets []xorValue, newBuckets []float64, oldSpans, newSpans []histogram.Span) bool { |
|
if len(oldSpans) == 0 || len(oldBuckets) == 0 { |
|
return false |
|
} |
|
|
|
oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices. |
|
oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span. |
|
oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset |
|
|
|
oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice. |
|
oldVal, newVal := oldBuckets[0].value, newBuckets[0] |
|
|
|
// Since we assume that new spans won't have missing buckets, there will never be a case |
|
// where the old index will not find a matching new index. |
|
for { |
|
if oldIdx == newIdx { |
|
if newVal < oldVal { |
|
return true |
|
} |
|
} |
|
|
|
if oldIdx <= newIdx { |
|
// Moving ahead old bucket and span by 1 index. |
|
if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 { |
|
// Current span is over. |
|
oldSpanSliceIdx++ |
|
oldInsideSpanIdx = 0 |
|
if oldSpanSliceIdx >= len(oldSpans) { |
|
// All old spans are over. |
|
break |
|
} |
|
oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset |
|
} else { |
|
oldInsideSpanIdx++ |
|
oldIdx++ |
|
} |
|
oldBucketSliceIdx++ |
|
oldVal = oldBuckets[oldBucketSliceIdx].value |
|
} |
|
|
|
if oldIdx > newIdx { |
|
// Moving ahead new bucket and span by 1 index. |
|
if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 { |
|
// Current span is over. |
|
newSpanSliceIdx++ |
|
newInsideSpanIdx = 0 |
|
if newSpanSliceIdx >= len(newSpans) { |
|
// All new spans are over. |
|
// This should not happen, old spans above should catch this first. |
|
panic("new spans over before old spans in counterReset") |
|
} |
|
newIdx += 1 + newSpans[newSpanSliceIdx].Offset |
|
} else { |
|
newInsideSpanIdx++ |
|
newIdx++ |
|
} |
|
newBucketSliceIdx++ |
|
newVal = newBuckets[newBucketSliceIdx] |
|
} |
|
} |
|
|
|
return false |
|
} |
|
|
|
// AppendFloatHistogram appends a float histogram to the chunk. The caller must ensure that |
|
// the histogram is properly structured, e.g. the number of buckets used |
|
// corresponds to the number conveyed by the span structures. First call |
|
// Appendable() and act accordingly! |
|
func (a *FloatHistogramAppender) AppendFloatHistogram(t int64, h *histogram.FloatHistogram) { |
|
var tDelta int64 |
|
num := binary.BigEndian.Uint16(a.b.bytes()) |
|
|
|
if value.IsStaleNaN(h.Sum) { |
|
// Emptying out other fields to write no buckets, and an empty |
|
// layout in case of first histogram in the chunk. |
|
h = &histogram.FloatHistogram{Sum: h.Sum} |
|
} |
|
|
|
if num == 0 { |
|
// The first append gets the privilege to dictate the layout |
|
// but it's also responsible for encoding it into the chunk! |
|
writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans) |
|
a.schema = h.Schema |
|
a.zThreshold = h.ZeroThreshold |
|
|
|
if len(h.PositiveSpans) > 0 { |
|
a.pSpans = make([]histogram.Span, len(h.PositiveSpans)) |
|
copy(a.pSpans, h.PositiveSpans) |
|
} else { |
|
a.pSpans = nil |
|
} |
|
if len(h.NegativeSpans) > 0 { |
|
a.nSpans = make([]histogram.Span, len(h.NegativeSpans)) |
|
copy(a.nSpans, h.NegativeSpans) |
|
} else { |
|
a.nSpans = nil |
|
} |
|
|
|
numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans) |
|
if numPBuckets > 0 { |
|
a.pBuckets = make([]xorValue, numPBuckets) |
|
for i := 0; i < numPBuckets; i++ { |
|
a.pBuckets[i] = xorValue{ |
|
value: h.PositiveBuckets[i], |
|
leading: 0xff, |
|
} |
|
} |
|
} else { |
|
a.pBuckets = nil |
|
} |
|
if numNBuckets > 0 { |
|
a.nBuckets = make([]xorValue, numNBuckets) |
|
for i := 0; i < numNBuckets; i++ { |
|
a.nBuckets[i] = xorValue{ |
|
value: h.NegativeBuckets[i], |
|
leading: 0xff, |
|
} |
|
} |
|
} else { |
|
a.nBuckets = nil |
|
} |
|
|
|
// Now store the actual data. |
|
putVarbitInt(a.b, t) |
|
a.b.writeBits(math.Float64bits(h.Count), 64) |
|
a.b.writeBits(math.Float64bits(h.ZeroCount), 64) |
|
a.b.writeBits(math.Float64bits(h.Sum), 64) |
|
a.cnt.value = h.Count |
|
a.zCnt.value = h.ZeroCount |
|
a.sum.value = h.Sum |
|
for _, b := range h.PositiveBuckets { |
|
a.b.writeBits(math.Float64bits(b), 64) |
|
} |
|
for _, b := range h.NegativeBuckets { |
|
a.b.writeBits(math.Float64bits(b), 64) |
|
} |
|
} else { |
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, |
|
// so we don't need a separate single delta logic for the 2nd sample. |
|
tDelta = t - a.t |
|
tDod := tDelta - a.tDelta |
|
putVarbitInt(a.b, tDod) |
|
|
|
a.writeXorValue(&a.cnt, h.Count) |
|
a.writeXorValue(&a.zCnt, h.ZeroCount) |
|
a.writeXorValue(&a.sum, h.Sum) |
|
|
|
for i, b := range h.PositiveBuckets { |
|
a.writeXorValue(&a.pBuckets[i], b) |
|
} |
|
for i, b := range h.NegativeBuckets { |
|
a.writeXorValue(&a.nBuckets[i], b) |
|
} |
|
} |
|
|
|
binary.BigEndian.PutUint16(a.b.bytes(), num+1) |
|
|
|
a.t = t |
|
a.tDelta = tDelta |
|
} |
|
|
|
func (a *FloatHistogramAppender) writeXorValue(old *xorValue, v float64) { |
|
xorWrite(a.b, v, old.value, &old.leading, &old.trailing) |
|
old.value = v |
|
} |
|
|
|
// Recode converts the current chunk to accommodate an expansion of the set of |
|
// (positive and/or negative) buckets used, according to the provided inserts, |
|
// resulting in the honoring of the provided new positive and negative spans. To |
|
// continue appending, use the returned Appender rather than the receiver of |
|
// this method. |
|
func (a *FloatHistogramAppender) Recode( |
|
positiveInserts, negativeInserts []Insert, |
|
positiveSpans, negativeSpans []histogram.Span, |
|
) (Chunk, Appender) { |
|
// TODO(beorn7): This currently just decodes everything and then encodes |
|
// it again with the new span layout. This can probably be done in-place |
|
// by editing the chunk. But let's first see how expensive it is in the |
|
// big picture. Also, in-place editing might create concurrency issues. |
|
byts := a.b.bytes() |
|
it := newFloatHistogramIterator(byts) |
|
hc := NewFloatHistogramChunk() |
|
app, err := hc.Appender() |
|
if err != nil { |
|
panic(err) |
|
} |
|
numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans) |
|
|
|
for it.Next() == ValFloatHistogram { |
|
tOld, hOld := it.AtFloatHistogram() |
|
|
|
// We have to newly allocate slices for the modified buckets |
|
// here because they are kept by the appender until the next |
|
// append. |
|
// TODO(beorn7): We might be able to optimize this. |
|
var positiveBuckets, negativeBuckets []float64 |
|
if numPositiveBuckets > 0 { |
|
positiveBuckets = make([]float64, numPositiveBuckets) |
|
} |
|
if numNegativeBuckets > 0 { |
|
negativeBuckets = make([]float64, numNegativeBuckets) |
|
} |
|
|
|
// Save the modified histogram to the new chunk. |
|
hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans |
|
if len(positiveInserts) > 0 { |
|
hOld.PositiveBuckets = insert(hOld.PositiveBuckets, positiveBuckets, positiveInserts, false) |
|
} |
|
if len(negativeInserts) > 0 { |
|
hOld.NegativeBuckets = insert(hOld.NegativeBuckets, negativeBuckets, negativeInserts, false) |
|
} |
|
app.AppendFloatHistogram(tOld, hOld) |
|
} |
|
|
|
hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000)) |
|
return hc, app |
|
} |
|
|
|
// RecodeHistogramm converts the current histogram (in-place) to accommodate an expansion of the set of |
|
// (positive and/or negative) buckets used. |
|
func (a *FloatHistogramAppender) RecodeHistogramm( |
|
fh *histogram.FloatHistogram, |
|
pBackwardInter, nBackwardInter []Insert, |
|
) { |
|
if len(pBackwardInter) > 0 { |
|
numPositiveBuckets := countSpans(fh.PositiveSpans) |
|
fh.PositiveBuckets = insert(fh.PositiveBuckets, make([]float64, numPositiveBuckets), pBackwardInter, false) |
|
} |
|
if len(nBackwardInter) > 0 { |
|
numNegativeBuckets := countSpans(fh.NegativeSpans) |
|
fh.NegativeBuckets = insert(fh.NegativeBuckets, make([]float64, numNegativeBuckets), nBackwardInter, false) |
|
} |
|
} |
|
|
|
type floatHistogramIterator struct { |
|
br bstreamReader |
|
numTotal uint16 |
|
numRead uint16 |
|
|
|
counterResetHeader CounterResetHeader |
|
|
|
// Layout: |
|
schema int32 |
|
zThreshold float64 |
|
pSpans, nSpans []histogram.Span |
|
|
|
// For the fields that are tracked as deltas and ultimately dod's. |
|
t int64 |
|
tDelta int64 |
|
|
|
// All Gorilla xor encoded. |
|
sum, cnt, zCnt xorValue |
|
|
|
// Buckets are not of type xorValue to avoid creating |
|
// new slices for every AtFloatHistogram call. |
|
pBuckets, nBuckets []float64 |
|
pBucketsLeading, nBucketsLeading []uint8 |
|
pBucketsTrailing, nBucketsTrailing []uint8 |
|
|
|
err error |
|
|
|
// Track calls to retrieve methods. Once they have been called, we |
|
// cannot recycle the bucket slices anymore because we have returned |
|
// them in the histogram. |
|
atFloatHistogramCalled bool |
|
} |
|
|
|
func (it *floatHistogramIterator) Seek(t int64) ValueType { |
|
if it.err != nil { |
|
return ValNone |
|
} |
|
|
|
for t > it.t || it.numRead == 0 { |
|
if it.Next() == ValNone { |
|
return ValNone |
|
} |
|
} |
|
return ValFloatHistogram |
|
} |
|
|
|
func (it *floatHistogramIterator) At() (int64, float64) { |
|
panic("cannot call floatHistogramIterator.At") |
|
} |
|
|
|
func (it *floatHistogramIterator) AtHistogram() (int64, *histogram.Histogram) { |
|
panic("cannot call floatHistogramIterator.AtHistogram") |
|
} |
|
|
|
func (it *floatHistogramIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { |
|
if value.IsStaleNaN(it.sum.value) { |
|
return it.t, &histogram.FloatHistogram{Sum: it.sum.value} |
|
} |
|
it.atFloatHistogramCalled = true |
|
return it.t, &histogram.FloatHistogram{ |
|
CounterResetHint: counterResetHint(it.counterResetHeader, it.numRead), |
|
Count: it.cnt.value, |
|
ZeroCount: it.zCnt.value, |
|
Sum: it.sum.value, |
|
ZeroThreshold: it.zThreshold, |
|
Schema: it.schema, |
|
PositiveSpans: it.pSpans, |
|
NegativeSpans: it.nSpans, |
|
PositiveBuckets: it.pBuckets, |
|
NegativeBuckets: it.nBuckets, |
|
} |
|
} |
|
|
|
func (it *floatHistogramIterator) AtT() int64 { |
|
return it.t |
|
} |
|
|
|
func (it *floatHistogramIterator) Err() error { |
|
return it.err |
|
} |
|
|
|
func (it *floatHistogramIterator) Reset(b []byte) { |
|
// The first 3 bytes contain chunk headers. |
|
// We skip that for actual samples. |
|
it.br = newBReader(b[3:]) |
|
it.numTotal = binary.BigEndian.Uint16(b) |
|
it.numRead = 0 |
|
|
|
it.counterResetHeader = CounterResetHeader(b[2] & 0b11000000) |
|
|
|
it.t, it.tDelta = 0, 0 |
|
it.cnt, it.zCnt, it.sum = xorValue{}, xorValue{}, xorValue{} |
|
|
|
if it.atFloatHistogramCalled { |
|
it.atFloatHistogramCalled = false |
|
it.pBuckets, it.nBuckets = nil, nil |
|
} else { |
|
it.pBuckets, it.nBuckets = it.pBuckets[:0], it.nBuckets[:0] |
|
} |
|
it.pBucketsLeading, it.pBucketsTrailing = it.pBucketsLeading[:0], it.pBucketsTrailing[:0] |
|
it.nBucketsLeading, it.nBucketsTrailing = it.nBucketsLeading[:0], it.nBucketsTrailing[:0] |
|
|
|
it.err = nil |
|
} |
|
|
|
func (it *floatHistogramIterator) Next() ValueType { |
|
if it.err != nil || it.numRead == it.numTotal { |
|
return ValNone |
|
} |
|
|
|
if it.numRead == 0 { |
|
// The first read is responsible for reading the chunk layout |
|
// and for initializing fields that depend on it. We give |
|
// counter reset info at chunk level, hence we discard it here. |
|
schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.schema = schema |
|
it.zThreshold = zeroThreshold |
|
it.pSpans, it.nSpans = posSpans, negSpans |
|
numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans) |
|
// Allocate bucket slices as needed, recycling existing slices |
|
// in case this iterator was reset and already has slices of a |
|
// sufficient capacity. |
|
if numPBuckets > 0 { |
|
it.pBuckets = append(it.pBuckets, make([]float64, numPBuckets)...) |
|
it.pBucketsLeading = append(it.pBucketsLeading, make([]uint8, numPBuckets)...) |
|
it.pBucketsTrailing = append(it.pBucketsTrailing, make([]uint8, numPBuckets)...) |
|
} |
|
if numNBuckets > 0 { |
|
it.nBuckets = append(it.nBuckets, make([]float64, numNBuckets)...) |
|
it.nBucketsLeading = append(it.nBucketsLeading, make([]uint8, numNBuckets)...) |
|
it.nBucketsTrailing = append(it.nBucketsTrailing, make([]uint8, numNBuckets)...) |
|
} |
|
|
|
// Now read the actual data. |
|
t, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.t = t |
|
|
|
cnt, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.cnt.value = math.Float64frombits(cnt) |
|
|
|
zcnt, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.zCnt.value = math.Float64frombits(zcnt) |
|
|
|
sum, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.sum.value = math.Float64frombits(sum) |
|
|
|
for i := range it.pBuckets { |
|
v, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.pBuckets[i] = math.Float64frombits(v) |
|
} |
|
for i := range it.nBuckets { |
|
v, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.nBuckets[i] = math.Float64frombits(v) |
|
} |
|
|
|
it.numRead++ |
|
return ValFloatHistogram |
|
} |
|
|
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, |
|
// so we don't need a separate single delta logic for the 2nd sample. |
|
|
|
// Recycle bucket slices that have not been returned yet. Otherwise, copy them. |
|
// We can always recycle the slices for leading and trailing bits as they are |
|
// never returned to the caller. |
|
if it.atFloatHistogramCalled { |
|
it.atFloatHistogramCalled = false |
|
if len(it.pBuckets) > 0 { |
|
newBuckets := make([]float64, len(it.pBuckets)) |
|
copy(newBuckets, it.pBuckets) |
|
it.pBuckets = newBuckets |
|
} else { |
|
it.pBuckets = nil |
|
} |
|
if len(it.nBuckets) > 0 { |
|
newBuckets := make([]float64, len(it.nBuckets)) |
|
copy(newBuckets, it.nBuckets) |
|
it.nBuckets = newBuckets |
|
} else { |
|
it.nBuckets = nil |
|
} |
|
} |
|
|
|
tDod, err := readVarbitInt(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.tDelta += tDod |
|
it.t += it.tDelta |
|
|
|
if ok := it.readXor(&it.cnt.value, &it.cnt.leading, &it.cnt.trailing); !ok { |
|
return ValNone |
|
} |
|
|
|
if ok := it.readXor(&it.zCnt.value, &it.zCnt.leading, &it.zCnt.trailing); !ok { |
|
return ValNone |
|
} |
|
|
|
if ok := it.readXor(&it.sum.value, &it.sum.leading, &it.sum.trailing); !ok { |
|
return ValNone |
|
} |
|
|
|
if value.IsStaleNaN(it.sum.value) { |
|
it.numRead++ |
|
return ValFloatHistogram |
|
} |
|
|
|
for i := range it.pBuckets { |
|
if ok := it.readXor(&it.pBuckets[i], &it.pBucketsLeading[i], &it.pBucketsTrailing[i]); !ok { |
|
return ValNone |
|
} |
|
} |
|
|
|
for i := range it.nBuckets { |
|
if ok := it.readXor(&it.nBuckets[i], &it.nBucketsLeading[i], &it.nBucketsTrailing[i]); !ok { |
|
return ValNone |
|
} |
|
} |
|
|
|
it.numRead++ |
|
return ValFloatHistogram |
|
} |
|
|
|
func (it *floatHistogramIterator) readXor(v *float64, leading, trailing *uint8) bool { |
|
err := xorRead(&it.br, v, leading, trailing) |
|
if err != nil { |
|
it.err = err |
|
return false |
|
} |
|
return true |
|
}
|
|
|