896f951e68
* Force buckets in a histogram to be monotonic for quantile estimation The assumption that bucket counts increase monotonically with increasing upperBound may be violated during: * Recording rule evaluation of histogram_quantile, especially when rate() has been applied to the underlying bucket timeseries. * Evaluation of histogram_quantile computed over federated bucket timeseries, especially when rate() has been applied This is because scraped data is not made available to RR evalution or federation atomically, so some buckets are computed with data from the N most recent scrapes, but the other buckets are missing the most recent observations. Monotonicity is usually guaranteed because if a bucket with upper bound u1 has count c1, then any bucket with a higher upper bound u > u1 must have counted all c1 observations and perhaps more, so that c >= c1. Randomly interspersed partial sampling breaks that guarantee, and rate() exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from 4 samples but the bucket with le=2000 has a count of 7, from 3 samples. The monotonicity is broken. It is exacerbated by rate() because under normal operation, cumulative counting of buckets will cause the bucket counts to diverge such that small differences from missing samples are not a problem. rate() removes this divergence.) bucketQuantile depends on that monotonicity to do a binary search for the bucket with the qth percentile count, so breaking the monotonicity guarantee causes bucketQuantile() to return undefined (nonsense) results. As a somewhat hacky solution until the Prometheus project is ready to accept the changes required to make scrapes atomic, we calculate the "envelope" of the histogram buckets, essentially removing any decreases in the count between successive buckets. * Fix up comment docs for ensureMonotonic * ensureMonotonic: Use switch statement Use switch statement rather than if/else for better readability. Process the most frequent cases first. |
||
---|---|---|
.github | ||
cmd | ||
config | ||
console_libraries | ||
consoles | ||
discovery | ||
documentation | ||
notifier | ||
promql | ||
relabel | ||
retrieval | ||
rules | ||
scripts | ||
storage | ||
template | ||
util | ||
vendor | ||
web | ||
.codeclimate.yml | ||
.dockerignore | ||
.gitignore | ||
.promu.yml | ||
.travis.yml | ||
CHANGELOG.md | ||
CONTRIBUTING.md | ||
Dockerfile | ||
LICENSE | ||
MAINTAINERS.md | ||
Makefile | ||
NOTICE | ||
README.md | ||
VERSION | ||
circle.yml | ||
code-of-conduct.md |
README.md
Prometheus
Visit prometheus.io for the full documentation, examples and guides.
Prometheus, a Cloud Native Computing Foundation project, is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.
Prometheus' main distinguishing features as compared to other monitoring systems are:
- a multi-dimensional data model (timeseries defined by metric name and set of key/value dimensions)
- a flexible query language to leverage this dimensionality
- no dependency on distributed storage; single server nodes are autonomous
- timeseries collection happens via a pull model over HTTP
- pushing timeseries is supported via an intermediary gateway
- targets are discovered via service discovery or static configuration
- multiple modes of graphing and dashboarding support
- support for hierarchical and horizontal federation
Architecture overview
Install
There are various ways of installing Prometheus.
Precompiled binaries
Precompiled binaries for released versions are available in the download section on prometheus.io. Using the latest production release binary is the recommended way of installing Prometheus. See the Installing chapter in the documentation for all the details.
Debian packages are available.
Docker images
Docker images are available on Quay.io.
You can launch a Prometheus container for trying it out with
$ docker run --name prometheus -d -p 127.0.0.1:9090:9090 quay.io/prometheus/prometheus
Prometheus will now be reachable at http://localhost:9090/.
Building from source
To build Prometheus from the source code yourself you need to have a working Go environment with version 1.5 or greater installed.
You can directly use the go
tool to download and install the prometheus
and promtool
binaries into your GOPATH
. We use Go 1.5's experimental
vendoring feature, so you will also need to set the GO15VENDOREXPERIMENT=1
environment variable in this case:
$ GO15VENDOREXPERIMENT=1 go get github.com/prometheus/prometheus/cmd/...
$ prometheus -config.file=your_config.yml
You can also clone the repository yourself and build using make
:
$ mkdir -p $GOPATH/src/github.com/prometheus
$ cd $GOPATH/src/github.com/prometheus
$ git clone https://github.com/prometheus/prometheus.git
$ cd prometheus
$ make build
$ ./prometheus -config.file=your_config.yml
The Makefile provides several targets:
- build: build the
prometheus
andpromtool
binaries - test: run the tests
- test-short: run the short tests
- format: format the source code
- vet: check the source code for common errors
- assets: rebuild the static assets
- docker: build a docker container for the current
HEAD
More information
- The source code is periodically indexed: Prometheus Core.
- You will find a Travis CI configuration in
.travis.yml
. - See the Community page for how to reach the Prometheus developers and users on various communication channels.
Contributing
Refer to CONTRIBUTING.md
License
Apache License 2.0, see LICENSE.