mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1132 lines
31 KiB
1132 lines
31 KiB
// Copyright 2015 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package promql |
|
|
|
import ( |
|
"container/heap" |
|
"math" |
|
"regexp" |
|
"sort" |
|
"strconv" |
|
|
|
"github.com/prometheus/common/model" |
|
|
|
"github.com/prometheus/prometheus/storage/metric" |
|
) |
|
|
|
// Function represents a function of the expression language and is |
|
// used by function nodes. |
|
type Function struct { |
|
Name string |
|
ArgTypes []model.ValueType |
|
OptionalArgs int |
|
ReturnType model.ValueType |
|
Call func(ev *evaluator, args Expressions) model.Value |
|
} |
|
|
|
// === time() model.SampleValue === |
|
func funcTime(ev *evaluator, args Expressions) model.Value { |
|
return &model.Scalar{ |
|
Value: model.SampleValue(ev.Timestamp.Unix()), |
|
Timestamp: ev.Timestamp, |
|
} |
|
} |
|
|
|
// extrapolatedRate is a utility function for rate/increase/delta. |
|
// It calculates the rate (allowing for counter resets if isCounter is true), |
|
// extrapolates if the first/last sample is close to the boundary, and returns |
|
// the result as either per-second (if isRate is true) or overall. |
|
func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) model.Value { |
|
ms := arg.(*MatrixSelector) |
|
|
|
rangeStart := ev.Timestamp.Add(-ms.Range - ms.Offset) |
|
rangeEnd := ev.Timestamp.Add(-ms.Offset) |
|
|
|
resultVector := vector{} |
|
|
|
matrixValue := ev.evalMatrix(ms) |
|
for _, samples := range matrixValue { |
|
// No sense in trying to compute a rate without at least two points. Drop |
|
// this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
var ( |
|
counterCorrection model.SampleValue |
|
lastValue model.SampleValue |
|
) |
|
for _, sample := range samples.Values { |
|
currentValue := sample.Value |
|
if isCounter && currentValue < lastValue { |
|
counterCorrection += lastValue - currentValue |
|
} |
|
lastValue = currentValue |
|
} |
|
resultValue := lastValue - samples.Values[0].Value + counterCorrection |
|
|
|
// Duration between first/last samples and boundary of range. |
|
durationToStart := samples.Values[0].Timestamp.Sub(rangeStart).Seconds() |
|
durationToEnd := rangeEnd.Sub(samples.Values[len(samples.Values)-1].Timestamp).Seconds() |
|
|
|
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp).Seconds() |
|
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Values)-1) |
|
|
|
if isCounter && resultValue > 0 && samples.Values[0].Value >= 0 { |
|
// Counters cannot be negative. If we have any slope at |
|
// all (i.e. resultValue went up), we can extrapolate |
|
// the zero point of the counter. If the duration to the |
|
// zero point is shorter than the durationToStart, we |
|
// take the zero point as the start of the series, |
|
// thereby avoiding extrapolation to negative counter |
|
// values. |
|
durationToZero := sampledInterval * float64(samples.Values[0].Value/resultValue) |
|
if durationToZero < durationToStart { |
|
durationToStart = durationToZero |
|
} |
|
} |
|
|
|
// If the first/last samples are close to the boundaries of the range, |
|
// extrapolate the result. This is as we expect that another sample |
|
// will exist given the spacing between samples we've seen thus far, |
|
// with an allowance for noise. |
|
extrapolationThreshold := averageDurationBetweenSamples * 1.1 |
|
extrapolateToInterval := sampledInterval |
|
|
|
if durationToStart < extrapolationThreshold { |
|
extrapolateToInterval += durationToStart |
|
} else { |
|
extrapolateToInterval += averageDurationBetweenSamples / 2 |
|
} |
|
if durationToEnd < extrapolationThreshold { |
|
extrapolateToInterval += durationToEnd |
|
} else { |
|
extrapolateToInterval += averageDurationBetweenSamples / 2 |
|
} |
|
resultValue = resultValue * model.SampleValue(extrapolateToInterval/sampledInterval) |
|
if isRate { |
|
resultValue = resultValue / model.SampleValue(ms.Range.Seconds()) |
|
} |
|
|
|
resultSample := &sample{ |
|
Metric: samples.Metric, |
|
Value: resultValue, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultSample.Metric.Del(model.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === delta(matrix model.ValMatrix) Vector === |
|
func funcDelta(ev *evaluator, args Expressions) model.Value { |
|
return extrapolatedRate(ev, args[0], false, false) |
|
} |
|
|
|
// === rate(node model.ValMatrix) Vector === |
|
func funcRate(ev *evaluator, args Expressions) model.Value { |
|
return extrapolatedRate(ev, args[0], true, true) |
|
} |
|
|
|
// === increase(node model.ValMatrix) Vector === |
|
func funcIncrease(ev *evaluator, args Expressions) model.Value { |
|
return extrapolatedRate(ev, args[0], true, false) |
|
} |
|
|
|
// === irate(node model.ValMatrix) Vector === |
|
func funcIrate(ev *evaluator, args Expressions) model.Value { |
|
resultVector := vector{} |
|
for _, samples := range ev.evalMatrix(args[0]) { |
|
// No sense in trying to compute a rate without at least two points. Drop |
|
// this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
|
|
lastSample := samples.Values[len(samples.Values)-1] |
|
previousSample := samples.Values[len(samples.Values)-2] |
|
|
|
var resultValue model.SampleValue |
|
if lastSample.Value < previousSample.Value { |
|
// Counter reset. |
|
resultValue = lastSample.Value |
|
} else { |
|
resultValue = lastSample.Value - previousSample.Value |
|
} |
|
|
|
sampledInterval := lastSample.Timestamp.Sub(previousSample.Timestamp) |
|
if sampledInterval == 0 { |
|
// Avoid dividing by 0. |
|
continue |
|
} |
|
// Convert to per-second. |
|
resultValue /= model.SampleValue(sampledInterval.Seconds()) |
|
|
|
resultSample := &sample{ |
|
Metric: samples.Metric, |
|
Value: resultValue, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultSample.Metric.Del(model.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// Calculate the trend value at the given index i in raw data d. |
|
// This is somewhat analogous to the slope of the trend at the given index. |
|
// The argument "s" is the set of computed smoothed values. |
|
// The argument "b" is the set of computed trend factors. |
|
// The argument "d" is the set of raw input values. |
|
func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 { |
|
if i == 0 { |
|
return b[0] |
|
} |
|
|
|
x := tf * (s[i] - s[i-1]) |
|
y := (1 - tf) * b[i-1] |
|
|
|
// Cache the computed value. |
|
b[i] = x + y |
|
|
|
return b[i] |
|
} |
|
|
|
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. |
|
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) effects how historical data will effect the current |
|
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) effects |
|
// how trends in historical data will effect the current data. A higher trend factor increases the influence. |
|
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". |
|
func funcHoltWinters(ev *evaluator, args Expressions) model.Value { |
|
mat := ev.evalMatrix(args[0]) |
|
|
|
// The smoothing factor argument. |
|
sf := ev.evalFloat(args[1]) |
|
|
|
// The trend factor argument. |
|
tf := ev.evalFloat(args[2]) |
|
|
|
// Sanity check the input. |
|
if sf <= 0 || sf >= 1 { |
|
ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 got: %f", sf) |
|
} |
|
if tf <= 0 || tf >= 1 { |
|
ev.errorf("invalid trend factor. Expected: 0 < tf < 1 got: %f", sf) |
|
} |
|
|
|
// Make an output vector large enough to hold the entire result. |
|
resultVector := make(vector, 0, len(mat)) |
|
|
|
// Create scratch values. |
|
var s, b, d []float64 |
|
|
|
var l int |
|
for _, samples := range mat { |
|
l = len(samples.Values) |
|
|
|
// Can't do the smoothing operation with less than two points. |
|
if l < 2 { |
|
continue |
|
} |
|
|
|
// Resize scratch values. |
|
if l != len(s) { |
|
s = make([]float64, l) |
|
b = make([]float64, l) |
|
d = make([]float64, l) |
|
} |
|
|
|
// Fill in the d values with the raw values from the input. |
|
for i, v := range samples.Values { |
|
d[i] = float64(v.Value) |
|
} |
|
|
|
// Set initial values. |
|
s[0] = d[0] |
|
b[0] = d[1] - d[0] |
|
|
|
// Run the smoothing operation. |
|
var x, y float64 |
|
for i := 1; i < len(d); i++ { |
|
|
|
// Scale the raw value against the smoothing factor. |
|
x = sf * d[i] |
|
|
|
// Scale the last smoothed value with the trend at this point. |
|
y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d)) |
|
|
|
s[i] = x + y |
|
} |
|
|
|
samples.Metric.Del(model.MetricNameLabel) |
|
resultVector = append(resultVector, &sample{ |
|
Metric: samples.Metric, |
|
Value: model.SampleValue(s[len(s)-1]), // The last value in the vector is the smoothed result. |
|
Timestamp: ev.Timestamp, |
|
}) |
|
} |
|
|
|
return resultVector |
|
} |
|
|
|
// === sort(node model.ValVector) Vector === |
|
func funcSort(ev *evaluator, args Expressions) model.Value { |
|
// NaN should sort to the bottom, so take descending sort with NaN first and |
|
// reverse it. |
|
byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0])) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return vector(byValueSorter) |
|
} |
|
|
|
// === sortDesc(node model.ValVector) Vector === |
|
func funcSortDesc(ev *evaluator, args Expressions) model.Value { |
|
// NaN should sort to the bottom, so take ascending sort with NaN first and |
|
// reverse it. |
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return vector(byValueSorter) |
|
} |
|
|
|
// === topk(k model.ValScalar, node model.ValVector) Vector === |
|
func funcTopk(ev *evaluator, args Expressions) model.Value { |
|
k := ev.evalInt(args[0]) |
|
if k < 1 { |
|
return vector{} |
|
} |
|
vec := ev.evalVector(args[1]) |
|
|
|
topk := make(vectorByValueHeap, 0, k) |
|
|
|
for _, el := range vec { |
|
if len(topk) < k || topk[0].Value < el.Value || math.IsNaN(float64(topk[0].Value)) { |
|
if len(topk) == k { |
|
heap.Pop(&topk) |
|
} |
|
heap.Push(&topk, el) |
|
} |
|
} |
|
// The heap keeps the lowest value on top, so reverse it. |
|
sort.Sort(sort.Reverse(topk)) |
|
return vector(topk) |
|
} |
|
|
|
// === bottomk(k model.ValScalar, node model.ValVector) Vector === |
|
func funcBottomk(ev *evaluator, args Expressions) model.Value { |
|
k := ev.evalInt(args[0]) |
|
if k < 1 { |
|
return vector{} |
|
} |
|
vec := ev.evalVector(args[1]) |
|
|
|
bottomk := make(vectorByReverseValueHeap, 0, k) |
|
|
|
for _, el := range vec { |
|
if len(bottomk) < k || bottomk[0].Value > el.Value || math.IsNaN(float64(bottomk[0].Value)) { |
|
if len(bottomk) == k { |
|
heap.Pop(&bottomk) |
|
} |
|
heap.Push(&bottomk, el) |
|
} |
|
} |
|
// The heap keeps the highest value on top, so reverse it. |
|
sort.Sort(sort.Reverse(bottomk)) |
|
return vector(bottomk) |
|
} |
|
|
|
// === clamp_max(vector model.ValVector, max Scalar) Vector === |
|
func funcClampMax(ev *evaluator, args Expressions) model.Value { |
|
vec := ev.evalVector(args[0]) |
|
max := ev.evalFloat(args[1]) |
|
for _, el := range vec { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Min(max, float64(el.Value))) |
|
} |
|
return vec |
|
} |
|
|
|
// === clamp_min(vector model.ValVector, min Scalar) Vector === |
|
func funcClampMin(ev *evaluator, args Expressions) model.Value { |
|
vec := ev.evalVector(args[0]) |
|
min := ev.evalFloat(args[1]) |
|
for _, el := range vec { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Max(min, float64(el.Value))) |
|
} |
|
return vec |
|
} |
|
|
|
// === drop_common_labels(node model.ValVector) Vector === |
|
func funcDropCommonLabels(ev *evaluator, args Expressions) model.Value { |
|
vec := ev.evalVector(args[0]) |
|
if len(vec) < 1 { |
|
return vector{} |
|
} |
|
common := model.LabelSet{} |
|
for k, v := range vec[0].Metric.Metric { |
|
// TODO(julius): Should we also drop common metric names? |
|
if k == model.MetricNameLabel { |
|
continue |
|
} |
|
common[k] = v |
|
} |
|
|
|
for _, el := range vec[1:] { |
|
for k, v := range common { |
|
if el.Metric.Metric[k] != v { |
|
// Deletion of map entries while iterating over them is safe. |
|
// From http://golang.org/ref/spec#For_statements: |
|
// "If map entries that have not yet been reached are deleted during |
|
// iteration, the corresponding iteration values will not be produced." |
|
delete(common, k) |
|
} |
|
} |
|
} |
|
|
|
for _, el := range vec { |
|
for k := range el.Metric.Metric { |
|
if _, ok := common[k]; ok { |
|
el.Metric.Del(k) |
|
} |
|
} |
|
} |
|
return vec |
|
} |
|
|
|
// === round(vector model.ValVector, toNearest=1 Scalar) Vector === |
|
func funcRound(ev *evaluator, args Expressions) model.Value { |
|
// round returns a number rounded to toNearest. |
|
// Ties are solved by rounding up. |
|
toNearest := float64(1) |
|
if len(args) >= 2 { |
|
toNearest = ev.evalFloat(args[1]) |
|
} |
|
// Invert as it seems to cause fewer floating point accuracy issues. |
|
toNearestInverse := 1.0 / toNearest |
|
|
|
vec := ev.evalVector(args[0]) |
|
for _, el := range vec { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse) |
|
} |
|
return vec |
|
} |
|
|
|
// === scalar(node model.ValVector) Scalar === |
|
func funcScalar(ev *evaluator, args Expressions) model.Value { |
|
v := ev.evalVector(args[0]) |
|
if len(v) != 1 { |
|
return &model.Scalar{ |
|
Value: model.SampleValue(math.NaN()), |
|
Timestamp: ev.Timestamp, |
|
} |
|
} |
|
return &model.Scalar{ |
|
Value: model.SampleValue(v[0].Value), |
|
Timestamp: ev.Timestamp, |
|
} |
|
} |
|
|
|
// === count_scalar(vector model.ValVector) model.SampleValue === |
|
func funcCountScalar(ev *evaluator, args Expressions) model.Value { |
|
return &model.Scalar{ |
|
Value: model.SampleValue(len(ev.evalVector(args[0]))), |
|
Timestamp: ev.Timestamp, |
|
} |
|
} |
|
|
|
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]model.SamplePair) model.SampleValue) model.Value { |
|
mat := ev.evalMatrix(args[0]) |
|
resultVector := vector{} |
|
|
|
for _, el := range mat { |
|
if len(el.Values) == 0 { |
|
continue |
|
} |
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
resultVector = append(resultVector, &sample{ |
|
Metric: el.Metric, |
|
Value: aggrFn(el.Values), |
|
Timestamp: ev.Timestamp, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === avg_over_time(matrix model.ValMatrix) Vector === |
|
func funcAvgOverTime(ev *evaluator, args Expressions) model.Value { |
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
var sum model.SampleValue |
|
for _, v := range values { |
|
sum += v.Value |
|
} |
|
return sum / model.SampleValue(len(values)) |
|
}) |
|
} |
|
|
|
// === count_over_time(matrix model.ValMatrix) Vector === |
|
func funcCountOverTime(ev *evaluator, args Expressions) model.Value { |
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
return model.SampleValue(len(values)) |
|
}) |
|
} |
|
|
|
// === floor(vector model.ValVector) Vector === |
|
func funcFloor(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Floor(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === max_over_time(matrix model.ValMatrix) Vector === |
|
func funcMaxOverTime(ev *evaluator, args Expressions) model.Value { |
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
max := math.Inf(-1) |
|
for _, v := range values { |
|
max = math.Max(max, float64(v.Value)) |
|
} |
|
return model.SampleValue(max) |
|
}) |
|
} |
|
|
|
// === min_over_time(matrix model.ValMatrix) Vector === |
|
func funcMinOverTime(ev *evaluator, args Expressions) model.Value { |
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
min := math.Inf(1) |
|
for _, v := range values { |
|
min = math.Min(min, float64(v.Value)) |
|
} |
|
return model.SampleValue(min) |
|
}) |
|
} |
|
|
|
// === sum_over_time(matrix model.ValMatrix) Vector === |
|
func funcSumOverTime(ev *evaluator, args Expressions) model.Value { |
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
var sum model.SampleValue |
|
for _, v := range values { |
|
sum += v.Value |
|
} |
|
return sum |
|
}) |
|
} |
|
|
|
// === abs(vector model.ValVector) Vector === |
|
func funcAbs(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Abs(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === absent(vector model.ValVector) Vector === |
|
func funcAbsent(ev *evaluator, args Expressions) model.Value { |
|
if len(ev.evalVector(args[0])) > 0 { |
|
return vector{} |
|
} |
|
m := model.Metric{} |
|
if vs, ok := args[0].(*VectorSelector); ok { |
|
for _, matcher := range vs.LabelMatchers { |
|
if matcher.Type == metric.Equal && matcher.Name != model.MetricNameLabel { |
|
m[matcher.Name] = matcher.Value |
|
} |
|
} |
|
} |
|
return vector{ |
|
&sample{ |
|
Metric: metric.Metric{ |
|
Metric: m, |
|
Copied: true, |
|
}, |
|
Value: 1, |
|
Timestamp: ev.Timestamp, |
|
}, |
|
} |
|
} |
|
|
|
// === ceil(vector model.ValVector) Vector === |
|
func funcCeil(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Ceil(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === exp(vector model.ValVector) Vector === |
|
func funcExp(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Exp(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === sqrt(vector VectorNode) Vector === |
|
func funcSqrt(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Sqrt(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === ln(vector model.ValVector) Vector === |
|
func funcLn(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Log(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === log2(vector model.ValVector) Vector === |
|
func funcLog2(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Log2(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === log10(vector model.ValVector) Vector === |
|
func funcLog10(ev *evaluator, args Expressions) model.Value { |
|
vector := ev.evalVector(args[0]) |
|
for _, el := range vector { |
|
el.Metric.Del(model.MetricNameLabel) |
|
el.Value = model.SampleValue(math.Log10(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// linearRegression performs a least-square linear regression analysis on the |
|
// provided SamplePairs. It returns the slope, and the intercept value at the |
|
// provided time. |
|
func linearRegression(samples []model.SamplePair, interceptTime model.Time) (slope, intercept model.SampleValue) { |
|
var ( |
|
n model.SampleValue |
|
sumX, sumY model.SampleValue |
|
sumXY, sumX2 model.SampleValue |
|
) |
|
for _, sample := range samples { |
|
x := model.SampleValue( |
|
model.Time(sample.Timestamp-interceptTime).UnixNano(), |
|
) / 1e9 |
|
n += 1.0 |
|
sumY += sample.Value |
|
sumX += x |
|
sumXY += x * sample.Value |
|
sumX2 += x * x |
|
} |
|
covXY := sumXY - sumX*sumY/n |
|
varX := sumX2 - sumX*sumX/n |
|
|
|
slope = covXY / varX |
|
intercept = sumY/n - slope*sumX/n |
|
return slope, intercept |
|
} |
|
|
|
// === deriv(node model.ValMatrix) Vector === |
|
func funcDeriv(ev *evaluator, args Expressions) model.Value { |
|
mat := ev.evalMatrix(args[0]) |
|
resultVector := make(vector, 0, len(mat)) |
|
|
|
for _, samples := range mat { |
|
// No sense in trying to compute a derivative without at least two points. |
|
// Drop this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
slope, _ := linearRegression(samples.Values, 0) |
|
resultSample := &sample{ |
|
Metric: samples.Metric, |
|
Value: slope, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultSample.Metric.Del(model.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === predict_linear(node model.ValMatrix, k model.ValScalar) Vector === |
|
func funcPredictLinear(ev *evaluator, args Expressions) model.Value { |
|
mat := ev.evalMatrix(args[0]) |
|
resultVector := make(vector, 0, len(mat)) |
|
duration := model.SampleValue(ev.evalFloat(args[1])) |
|
|
|
for _, samples := range mat { |
|
// No sense in trying to predict anything without at least two points. |
|
// Drop this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
slope, intercept := linearRegression(samples.Values, ev.Timestamp) |
|
resultSample := &sample{ |
|
Metric: samples.Metric, |
|
Value: slope*duration + intercept, |
|
Timestamp: ev.Timestamp, |
|
} |
|
resultSample.Metric.Del(model.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === histogram_quantile(k model.ValScalar, vector model.ValVector) Vector === |
|
func funcHistogramQuantile(ev *evaluator, args Expressions) model.Value { |
|
q := model.SampleValue(ev.evalFloat(args[0])) |
|
inVec := ev.evalVector(args[1]) |
|
|
|
outVec := vector{} |
|
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} |
|
for _, el := range inVec { |
|
upperBound, err := strconv.ParseFloat( |
|
string(el.Metric.Metric[model.BucketLabel]), 64, |
|
) |
|
if err != nil { |
|
// Oops, no bucket label or malformed label value. Skip. |
|
// TODO(beorn7): Issue a warning somehow. |
|
continue |
|
} |
|
signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) |
|
mb, ok := signatureToMetricWithBuckets[signature] |
|
if !ok { |
|
el.Metric.Del(model.BucketLabel) |
|
el.Metric.Del(model.MetricNameLabel) |
|
mb = &metricWithBuckets{el.Metric, nil} |
|
signatureToMetricWithBuckets[signature] = mb |
|
} |
|
mb.buckets = append(mb.buckets, bucket{upperBound, el.Value}) |
|
} |
|
|
|
for _, mb := range signatureToMetricWithBuckets { |
|
outVec = append(outVec, &sample{ |
|
Metric: mb.metric, |
|
Value: model.SampleValue(quantile(q, mb.buckets)), |
|
Timestamp: ev.Timestamp, |
|
}) |
|
} |
|
|
|
return outVec |
|
} |
|
|
|
// === resets(matrix model.ValMatrix) Vector === |
|
func funcResets(ev *evaluator, args Expressions) model.Value { |
|
in := ev.evalMatrix(args[0]) |
|
out := make(vector, 0, len(in)) |
|
|
|
for _, samples := range in { |
|
resets := 0 |
|
prev := model.SampleValue(samples.Values[0].Value) |
|
for _, sample := range samples.Values[1:] { |
|
current := sample.Value |
|
if current < prev { |
|
resets++ |
|
} |
|
prev = current |
|
} |
|
|
|
rs := &sample{ |
|
Metric: samples.Metric, |
|
Value: model.SampleValue(resets), |
|
Timestamp: ev.Timestamp, |
|
} |
|
rs.Metric.Del(model.MetricNameLabel) |
|
out = append(out, rs) |
|
} |
|
return out |
|
} |
|
|
|
// === changes(matrix model.ValMatrix) Vector === |
|
func funcChanges(ev *evaluator, args Expressions) model.Value { |
|
in := ev.evalMatrix(args[0]) |
|
out := make(vector, 0, len(in)) |
|
|
|
for _, samples := range in { |
|
changes := 0 |
|
prev := model.SampleValue(samples.Values[0].Value) |
|
for _, sample := range samples.Values[1:] { |
|
current := sample.Value |
|
if current != prev { |
|
changes++ |
|
} |
|
prev = current |
|
} |
|
|
|
rs := &sample{ |
|
Metric: samples.Metric, |
|
Value: model.SampleValue(changes), |
|
Timestamp: ev.Timestamp, |
|
} |
|
rs.Metric.Del(model.MetricNameLabel) |
|
out = append(out, rs) |
|
} |
|
return out |
|
} |
|
|
|
// === label_replace(vector model.ValVector, dst_label, replacement, src_labelname, regex model.ValString) Vector === |
|
func funcLabelReplace(ev *evaluator, args Expressions) model.Value { |
|
var ( |
|
vector = ev.evalVector(args[0]) |
|
dst = model.LabelName(ev.evalString(args[1]).Value) |
|
repl = ev.evalString(args[2]).Value |
|
src = model.LabelName(ev.evalString(args[3]).Value) |
|
regexStr = ev.evalString(args[4]).Value |
|
) |
|
|
|
regex, err := regexp.Compile("^(?:" + regexStr + ")$") |
|
if err != nil { |
|
ev.errorf("invalid regular expression in label_replace(): %s", regexStr) |
|
} |
|
if !model.LabelNameRE.MatchString(string(dst)) { |
|
ev.errorf("invalid destination label name in label_replace(): %s", dst) |
|
} |
|
|
|
outSet := make(map[model.Fingerprint]struct{}, len(vector)) |
|
for _, el := range vector { |
|
srcVal := string(el.Metric.Metric[src]) |
|
indexes := regex.FindStringSubmatchIndex(srcVal) |
|
// If there is no match, no replacement should take place. |
|
if indexes == nil { |
|
continue |
|
} |
|
res := regex.ExpandString([]byte{}, repl, srcVal, indexes) |
|
if len(res) == 0 { |
|
el.Metric.Del(dst) |
|
} else { |
|
el.Metric.Set(dst, model.LabelValue(res)) |
|
} |
|
|
|
fp := el.Metric.Metric.Fingerprint() |
|
if _, exists := outSet[fp]; exists { |
|
ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric.Metric) |
|
} else { |
|
outSet[fp] = struct{}{} |
|
} |
|
} |
|
|
|
return vector |
|
} |
|
|
|
// === vector(s scalar) Vector === |
|
func funcVector(ev *evaluator, args Expressions) model.Value { |
|
return vector{ |
|
&sample{ |
|
Metric: metric.Metric{}, |
|
Value: model.SampleValue(ev.evalFloat(args[0])), |
|
Timestamp: ev.Timestamp, |
|
}, |
|
} |
|
} |
|
|
|
var functions = map[string]*Function{ |
|
"abs": { |
|
Name: "abs", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcAbs, |
|
}, |
|
"absent": { |
|
Name: "absent", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcAbsent, |
|
}, |
|
"increase": { |
|
Name: "increase", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcIncrease, |
|
}, |
|
"avg_over_time": { |
|
Name: "avg_over_time", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcAvgOverTime, |
|
}, |
|
"bottomk": { |
|
Name: "bottomk", |
|
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcBottomk, |
|
}, |
|
"ceil": { |
|
Name: "ceil", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcCeil, |
|
}, |
|
"changes": { |
|
Name: "changes", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcChanges, |
|
}, |
|
"clamp_max": { |
|
Name: "clamp_max", |
|
ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, |
|
ReturnType: model.ValVector, |
|
Call: funcClampMax, |
|
}, |
|
"clamp_min": { |
|
Name: "clamp_min", |
|
ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, |
|
ReturnType: model.ValVector, |
|
Call: funcClampMin, |
|
}, |
|
"count_over_time": { |
|
Name: "count_over_time", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcCountOverTime, |
|
}, |
|
"count_scalar": { |
|
Name: "count_scalar", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValScalar, |
|
Call: funcCountScalar, |
|
}, |
|
"delta": { |
|
Name: "delta", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcDelta, |
|
}, |
|
"deriv": { |
|
Name: "deriv", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcDeriv, |
|
}, |
|
"drop_common_labels": { |
|
Name: "drop_common_labels", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcDropCommonLabels, |
|
}, |
|
"exp": { |
|
Name: "exp", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcExp, |
|
}, |
|
"floor": { |
|
Name: "floor", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcFloor, |
|
}, |
|
"histogram_quantile": { |
|
Name: "histogram_quantile", |
|
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcHistogramQuantile, |
|
}, |
|
"holt_winters": { |
|
Name: "holt_winters", |
|
ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar, model.ValScalar}, |
|
ReturnType: model.ValVector, |
|
Call: funcHoltWinters, |
|
}, |
|
"irate": { |
|
Name: "irate", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcIrate, |
|
}, |
|
"label_replace": { |
|
Name: "label_replace", |
|
ArgTypes: []model.ValueType{model.ValVector, model.ValString, model.ValString, model.ValString, model.ValString}, |
|
ReturnType: model.ValVector, |
|
Call: funcLabelReplace, |
|
}, |
|
"ln": { |
|
Name: "ln", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcLn, |
|
}, |
|
"log10": { |
|
Name: "log10", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcLog10, |
|
}, |
|
"log2": { |
|
Name: "log2", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcLog2, |
|
}, |
|
"max_over_time": { |
|
Name: "max_over_time", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcMaxOverTime, |
|
}, |
|
"min_over_time": { |
|
Name: "min_over_time", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcMinOverTime, |
|
}, |
|
"predict_linear": { |
|
Name: "predict_linear", |
|
ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar}, |
|
ReturnType: model.ValVector, |
|
Call: funcPredictLinear, |
|
}, |
|
"rate": { |
|
Name: "rate", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcRate, |
|
}, |
|
"resets": { |
|
Name: "resets", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcResets, |
|
}, |
|
"round": { |
|
Name: "round", |
|
ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, |
|
OptionalArgs: 1, |
|
ReturnType: model.ValVector, |
|
Call: funcRound, |
|
}, |
|
"scalar": { |
|
Name: "scalar", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValScalar, |
|
Call: funcScalar, |
|
}, |
|
"sort": { |
|
Name: "sort", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcSort, |
|
}, |
|
"sort_desc": { |
|
Name: "sort_desc", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcSortDesc, |
|
}, |
|
"sqrt": { |
|
Name: "sqrt", |
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcSqrt, |
|
}, |
|
"sum_over_time": { |
|
Name: "sum_over_time", |
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
ReturnType: model.ValVector, |
|
Call: funcSumOverTime, |
|
}, |
|
"time": { |
|
Name: "time", |
|
ArgTypes: []model.ValueType{}, |
|
ReturnType: model.ValScalar, |
|
Call: funcTime, |
|
}, |
|
"topk": { |
|
Name: "topk", |
|
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, |
|
ReturnType: model.ValVector, |
|
Call: funcTopk, |
|
}, |
|
"vector": { |
|
Name: "vector", |
|
ArgTypes: []model.ValueType{model.ValScalar}, |
|
ReturnType: model.ValVector, |
|
Call: funcVector, |
|
}, |
|
} |
|
|
|
// getFunction returns a predefined Function object for the given name. |
|
func getFunction(name string) (*Function, bool) { |
|
function, ok := functions[name] |
|
return function, ok |
|
} |
|
|
|
type vectorByValueHeap vector |
|
|
|
func (s vectorByValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool { |
|
if math.IsNaN(float64(s[i].Value)) { |
|
return true |
|
} |
|
return s[i].Value < s[j].Value |
|
} |
|
|
|
func (s vectorByValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) { |
|
*s = append(*s, x.(*sample)) |
|
} |
|
|
|
func (s *vectorByValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
} |
|
|
|
type vectorByReverseValueHeap vector |
|
|
|
func (s vectorByReverseValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByReverseValueHeap) Less(i, j int) bool { |
|
if math.IsNaN(float64(s[i].Value)) { |
|
return true |
|
} |
|
return s[i].Value > s[j].Value |
|
} |
|
|
|
func (s vectorByReverseValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByReverseValueHeap) Push(x interface{}) { |
|
*s = append(*s, x.(*sample)) |
|
} |
|
|
|
func (s *vectorByReverseValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
}
|
|
|