mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
686 lines
16 KiB
686 lines
16 KiB
// Copyright 2017 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package main |
|
|
|
import ( |
|
"bufio" |
|
"context" |
|
"fmt" |
|
"io" |
|
"math" |
|
"os" |
|
"path/filepath" |
|
"runtime" |
|
"runtime/pprof" |
|
"sort" |
|
"strconv" |
|
"strings" |
|
"sync" |
|
"text/tabwriter" |
|
"time" |
|
|
|
"github.com/prometheus/prometheus/storage" |
|
"github.com/prometheus/prometheus/tsdb/index" |
|
|
|
"github.com/alecthomas/units" |
|
"github.com/go-kit/log" |
|
|
|
"github.com/prometheus/prometheus/model/labels" |
|
"github.com/prometheus/prometheus/tsdb" |
|
"github.com/prometheus/prometheus/tsdb/chunks" |
|
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" |
|
"github.com/prometheus/prometheus/tsdb/fileutil" |
|
) |
|
|
|
const timeDelta = 30000 |
|
|
|
type writeBenchmark struct { |
|
outPath string |
|
samplesFile string |
|
cleanup bool |
|
numMetrics int |
|
|
|
storage *tsdb.DB |
|
|
|
cpuprof *os.File |
|
memprof *os.File |
|
blockprof *os.File |
|
mtxprof *os.File |
|
logger log.Logger |
|
} |
|
|
|
func benchmarkWrite(outPath, samplesFile string, numMetrics, numScrapes int) error { |
|
b := &writeBenchmark{ |
|
outPath: outPath, |
|
samplesFile: samplesFile, |
|
numMetrics: numMetrics, |
|
logger: log.NewLogfmtLogger(log.NewSyncWriter(os.Stderr)), |
|
} |
|
if b.outPath == "" { |
|
dir, err := os.MkdirTemp("", "tsdb_bench") |
|
if err != nil { |
|
return err |
|
} |
|
b.outPath = dir |
|
b.cleanup = true |
|
} |
|
if err := os.RemoveAll(b.outPath); err != nil { |
|
return err |
|
} |
|
if err := os.MkdirAll(b.outPath, 0o777); err != nil { |
|
return err |
|
} |
|
|
|
dir := filepath.Join(b.outPath, "storage") |
|
|
|
l := log.With(b.logger, "ts", log.DefaultTimestampUTC, "caller", log.DefaultCaller) |
|
|
|
st, err := tsdb.Open(dir, l, nil, &tsdb.Options{ |
|
RetentionDuration: int64(15 * 24 * time.Hour / time.Millisecond), |
|
MinBlockDuration: int64(2 * time.Hour / time.Millisecond), |
|
}, tsdb.NewDBStats()) |
|
if err != nil { |
|
return err |
|
} |
|
st.DisableCompactions() |
|
b.storage = st |
|
|
|
var lbs []labels.Labels |
|
|
|
if _, err = measureTime("readData", func() error { |
|
f, err := os.Open(b.samplesFile) |
|
if err != nil { |
|
return err |
|
} |
|
defer f.Close() |
|
|
|
lbs, err = readPrometheusLabels(f, b.numMetrics) |
|
if err != nil { |
|
return err |
|
} |
|
return nil |
|
}); err != nil { |
|
return err |
|
} |
|
|
|
var total uint64 |
|
|
|
dur, err := measureTime("ingestScrapes", func() error { |
|
if err := b.startProfiling(); err != nil { |
|
return err |
|
} |
|
total, err = b.ingestScrapes(lbs, numScrapes) |
|
if err != nil { |
|
return err |
|
} |
|
return nil |
|
}) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
fmt.Println(" > total samples:", total) |
|
fmt.Println(" > samples/sec:", float64(total)/dur.Seconds()) |
|
|
|
if _, err = measureTime("stopStorage", func() error { |
|
if err := b.storage.Close(); err != nil { |
|
return err |
|
} |
|
|
|
return b.stopProfiling() |
|
}); err != nil { |
|
return err |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func (b *writeBenchmark) ingestScrapes(lbls []labels.Labels, scrapeCount int) (uint64, error) { |
|
var mu sync.Mutex |
|
var total uint64 |
|
|
|
for i := 0; i < scrapeCount; i += 100 { |
|
var wg sync.WaitGroup |
|
lbls := lbls |
|
for len(lbls) > 0 { |
|
l := 1000 |
|
if len(lbls) < 1000 { |
|
l = len(lbls) |
|
} |
|
batch := lbls[:l] |
|
lbls = lbls[l:] |
|
|
|
wg.Add(1) |
|
go func() { |
|
n, err := b.ingestScrapesShard(batch, 100, int64(timeDelta*i)) |
|
if err != nil { |
|
// exitWithError(err) |
|
fmt.Println(" err", err) |
|
} |
|
mu.Lock() |
|
total += n |
|
mu.Unlock() |
|
wg.Done() |
|
}() |
|
} |
|
wg.Wait() |
|
} |
|
fmt.Println("ingestion completed") |
|
|
|
return total, nil |
|
} |
|
|
|
func (b *writeBenchmark) ingestScrapesShard(lbls []labels.Labels, scrapeCount int, baset int64) (uint64, error) { |
|
ts := baset |
|
|
|
type sample struct { |
|
labels labels.Labels |
|
value int64 |
|
ref *storage.SeriesRef |
|
} |
|
|
|
scrape := make([]*sample, 0, len(lbls)) |
|
|
|
for _, m := range lbls { |
|
scrape = append(scrape, &sample{ |
|
labels: m, |
|
value: 123456789, |
|
}) |
|
} |
|
total := uint64(0) |
|
|
|
for i := 0; i < scrapeCount; i++ { |
|
app := b.storage.Appender(context.TODO()) |
|
ts += timeDelta |
|
|
|
for _, s := range scrape { |
|
s.value += 1000 |
|
|
|
var ref storage.SeriesRef |
|
if s.ref != nil { |
|
ref = *s.ref |
|
} |
|
|
|
ref, err := app.Append(ref, s.labels, ts, float64(s.value)) |
|
if err != nil { |
|
panic(err) |
|
} |
|
|
|
if s.ref == nil { |
|
s.ref = &ref |
|
} |
|
total++ |
|
} |
|
if err := app.Commit(); err != nil { |
|
return total, err |
|
} |
|
} |
|
return total, nil |
|
} |
|
|
|
func (b *writeBenchmark) startProfiling() error { |
|
var err error |
|
|
|
// Start CPU profiling. |
|
b.cpuprof, err = os.Create(filepath.Join(b.outPath, "cpu.prof")) |
|
if err != nil { |
|
return fmt.Errorf("bench: could not create cpu profile: %w", err) |
|
} |
|
if err := pprof.StartCPUProfile(b.cpuprof); err != nil { |
|
return fmt.Errorf("bench: could not start CPU profile: %w", err) |
|
} |
|
|
|
// Start memory profiling. |
|
b.memprof, err = os.Create(filepath.Join(b.outPath, "mem.prof")) |
|
if err != nil { |
|
return fmt.Errorf("bench: could not create memory profile: %w", err) |
|
} |
|
runtime.MemProfileRate = 64 * 1024 |
|
|
|
// Start fatal profiling. |
|
b.blockprof, err = os.Create(filepath.Join(b.outPath, "block.prof")) |
|
if err != nil { |
|
return fmt.Errorf("bench: could not create block profile: %w", err) |
|
} |
|
runtime.SetBlockProfileRate(20) |
|
|
|
b.mtxprof, err = os.Create(filepath.Join(b.outPath, "mutex.prof")) |
|
if err != nil { |
|
return fmt.Errorf("bench: could not create mutex profile: %w", err) |
|
} |
|
runtime.SetMutexProfileFraction(20) |
|
return nil |
|
} |
|
|
|
func (b *writeBenchmark) stopProfiling() error { |
|
if b.cpuprof != nil { |
|
pprof.StopCPUProfile() |
|
b.cpuprof.Close() |
|
b.cpuprof = nil |
|
} |
|
if b.memprof != nil { |
|
if err := pprof.Lookup("heap").WriteTo(b.memprof, 0); err != nil { |
|
return fmt.Errorf("error writing mem profile: %w", err) |
|
} |
|
b.memprof.Close() |
|
b.memprof = nil |
|
} |
|
if b.blockprof != nil { |
|
if err := pprof.Lookup("block").WriteTo(b.blockprof, 0); err != nil { |
|
return fmt.Errorf("error writing block profile: %w", err) |
|
} |
|
b.blockprof.Close() |
|
b.blockprof = nil |
|
runtime.SetBlockProfileRate(0) |
|
} |
|
if b.mtxprof != nil { |
|
if err := pprof.Lookup("mutex").WriteTo(b.mtxprof, 0); err != nil { |
|
return fmt.Errorf("error writing mutex profile: %w", err) |
|
} |
|
b.mtxprof.Close() |
|
b.mtxprof = nil |
|
runtime.SetMutexProfileFraction(0) |
|
} |
|
return nil |
|
} |
|
|
|
func measureTime(stage string, f func() error) (time.Duration, error) { |
|
fmt.Printf(">> start stage=%s\n", stage) |
|
start := time.Now() |
|
if err := f(); err != nil { |
|
return 0, err |
|
} |
|
|
|
fmt.Printf(">> completed stage=%s duration=%s\n", stage, time.Since(start)) |
|
return time.Since(start), nil |
|
} |
|
|
|
func readPrometheusLabels(r io.Reader, n int) ([]labels.Labels, error) { |
|
scanner := bufio.NewScanner(r) |
|
|
|
var mets []labels.Labels |
|
hashes := map[uint64]struct{}{} |
|
i := 0 |
|
|
|
for scanner.Scan() && i < n { |
|
m := make(labels.Labels, 0, 10) |
|
|
|
r := strings.NewReplacer("\"", "", "{", "", "}", "") |
|
s := r.Replace(scanner.Text()) |
|
|
|
labelChunks := strings.Split(s, ",") |
|
for _, labelChunk := range labelChunks { |
|
split := strings.Split(labelChunk, ":") |
|
m = append(m, labels.Label{Name: split[0], Value: split[1]}) |
|
} |
|
// Order of the k/v labels matters, don't assume we'll always receive them already sorted. |
|
sort.Sort(m) |
|
h := m.Hash() |
|
if _, ok := hashes[h]; ok { |
|
continue |
|
} |
|
mets = append(mets, m) |
|
hashes[h] = struct{}{} |
|
i++ |
|
} |
|
return mets, nil |
|
} |
|
|
|
func listBlocks(path string, humanReadable bool) error { |
|
db, err := tsdb.OpenDBReadOnly(path, nil) |
|
if err != nil { |
|
return err |
|
} |
|
defer func() { |
|
err = tsdb_errors.NewMulti(err, db.Close()).Err() |
|
}() |
|
blocks, err := db.Blocks() |
|
if err != nil { |
|
return err |
|
} |
|
printBlocks(blocks, true, humanReadable) |
|
return nil |
|
} |
|
|
|
func printBlocks(blocks []tsdb.BlockReader, writeHeader, humanReadable bool) { |
|
tw := tabwriter.NewWriter(os.Stdout, 13, 0, 2, ' ', 0) |
|
defer tw.Flush() |
|
|
|
if writeHeader { |
|
fmt.Fprintln(tw, "BLOCK ULID\tMIN TIME\tMAX TIME\tDURATION\tNUM SAMPLES\tNUM CHUNKS\tNUM SERIES\tSIZE") |
|
} |
|
|
|
for _, b := range blocks { |
|
meta := b.Meta() |
|
|
|
fmt.Fprintf(tw, |
|
"%v\t%v\t%v\t%v\t%v\t%v\t%v\t%v\n", |
|
meta.ULID, |
|
getFormatedTime(meta.MinTime, humanReadable), |
|
getFormatedTime(meta.MaxTime, humanReadable), |
|
time.Duration(meta.MaxTime-meta.MinTime)*time.Millisecond, |
|
meta.Stats.NumSamples, |
|
meta.Stats.NumChunks, |
|
meta.Stats.NumSeries, |
|
getFormatedBytes(b.Size(), humanReadable), |
|
) |
|
} |
|
} |
|
|
|
func getFormatedTime(timestamp int64, humanReadable bool) string { |
|
if humanReadable { |
|
return time.Unix(timestamp/1000, 0).UTC().String() |
|
} |
|
return strconv.FormatInt(timestamp, 10) |
|
} |
|
|
|
func getFormatedBytes(bytes int64, humanReadable bool) string { |
|
if humanReadable { |
|
return units.Base2Bytes(bytes).String() |
|
} |
|
return strconv.FormatInt(bytes, 10) |
|
} |
|
|
|
func openBlock(path, blockID string) (*tsdb.DBReadOnly, tsdb.BlockReader, error) { |
|
db, err := tsdb.OpenDBReadOnly(path, nil) |
|
if err != nil { |
|
return nil, nil, err |
|
} |
|
blocks, err := db.Blocks() |
|
if err != nil { |
|
return nil, nil, err |
|
} |
|
var block tsdb.BlockReader |
|
if blockID != "" { |
|
for _, b := range blocks { |
|
if b.Meta().ULID.String() == blockID { |
|
block = b |
|
break |
|
} |
|
} |
|
} else if len(blocks) > 0 { |
|
block = blocks[len(blocks)-1] |
|
} |
|
if block == nil { |
|
return nil, nil, fmt.Errorf("block %s not found", blockID) |
|
} |
|
return db, block, nil |
|
} |
|
|
|
func analyzeBlock(path, blockID string, limit int, runExtended bool) error { |
|
db, block, err := openBlock(path, blockID) |
|
if err != nil { |
|
return err |
|
} |
|
defer func() { |
|
err = tsdb_errors.NewMulti(err, db.Close()).Err() |
|
}() |
|
|
|
meta := block.Meta() |
|
fmt.Printf("Block ID: %s\n", meta.ULID) |
|
// Presume 1ms resolution that Prometheus uses. |
|
fmt.Printf("Duration: %s\n", (time.Duration(meta.MaxTime-meta.MinTime) * 1e6).String()) |
|
fmt.Printf("Series: %d\n", meta.Stats.NumSeries) |
|
ir, err := block.Index() |
|
if err != nil { |
|
return err |
|
} |
|
defer ir.Close() |
|
|
|
allLabelNames, err := ir.LabelNames() |
|
if err != nil { |
|
return err |
|
} |
|
fmt.Printf("Label names: %d\n", len(allLabelNames)) |
|
|
|
type postingInfo struct { |
|
key string |
|
metric uint64 |
|
} |
|
postingInfos := []postingInfo{} |
|
|
|
printInfo := func(postingInfos []postingInfo) { |
|
sort.Slice(postingInfos, func(i, j int) bool { return postingInfos[i].metric > postingInfos[j].metric }) |
|
|
|
for i, pc := range postingInfos { |
|
if i >= limit { |
|
break |
|
} |
|
fmt.Printf("%d %s\n", pc.metric, pc.key) |
|
} |
|
} |
|
|
|
labelsUncovered := map[string]uint64{} |
|
labelpairsUncovered := map[string]uint64{} |
|
labelpairsCount := map[string]uint64{} |
|
entries := 0 |
|
p, err := ir.Postings("", "") // The special all key. |
|
if err != nil { |
|
return err |
|
} |
|
lbls := labels.Labels{} |
|
chks := []chunks.Meta{} |
|
for p.Next() { |
|
if err = ir.Series(p.At(), &lbls, &chks); err != nil { |
|
return err |
|
} |
|
// Amount of the block time range not covered by this series. |
|
uncovered := uint64(meta.MaxTime-meta.MinTime) - uint64(chks[len(chks)-1].MaxTime-chks[0].MinTime) |
|
for _, lbl := range lbls { |
|
key := lbl.Name + "=" + lbl.Value |
|
labelsUncovered[lbl.Name] += uncovered |
|
labelpairsUncovered[key] += uncovered |
|
labelpairsCount[key]++ |
|
entries++ |
|
} |
|
} |
|
if p.Err() != nil { |
|
return p.Err() |
|
} |
|
fmt.Printf("Postings (unique label pairs): %d\n", len(labelpairsUncovered)) |
|
fmt.Printf("Postings entries (total label pairs): %d\n", entries) |
|
|
|
postingInfos = postingInfos[:0] |
|
for k, m := range labelpairsUncovered { |
|
postingInfos = append(postingInfos, postingInfo{k, uint64(float64(m) / float64(meta.MaxTime-meta.MinTime))}) |
|
} |
|
|
|
fmt.Printf("\nLabel pairs most involved in churning:\n") |
|
printInfo(postingInfos) |
|
|
|
postingInfos = postingInfos[:0] |
|
for k, m := range labelsUncovered { |
|
postingInfos = append(postingInfos, postingInfo{k, uint64(float64(m) / float64(meta.MaxTime-meta.MinTime))}) |
|
} |
|
|
|
fmt.Printf("\nLabel names most involved in churning:\n") |
|
printInfo(postingInfos) |
|
|
|
postingInfos = postingInfos[:0] |
|
for k, m := range labelpairsCount { |
|
postingInfos = append(postingInfos, postingInfo{k, m}) |
|
} |
|
|
|
fmt.Printf("\nMost common label pairs:\n") |
|
printInfo(postingInfos) |
|
|
|
postingInfos = postingInfos[:0] |
|
for _, n := range allLabelNames { |
|
values, err := ir.SortedLabelValues(n) |
|
if err != nil { |
|
return err |
|
} |
|
var cumulativeLength uint64 |
|
for _, str := range values { |
|
cumulativeLength += uint64(len(str)) |
|
} |
|
postingInfos = append(postingInfos, postingInfo{n, cumulativeLength}) |
|
} |
|
|
|
fmt.Printf("\nLabel names with highest cumulative label value length:\n") |
|
printInfo(postingInfos) |
|
|
|
postingInfos = postingInfos[:0] |
|
for _, n := range allLabelNames { |
|
lv, err := ir.SortedLabelValues(n) |
|
if err != nil { |
|
return err |
|
} |
|
postingInfos = append(postingInfos, postingInfo{n, uint64(len(lv))}) |
|
} |
|
fmt.Printf("\nHighest cardinality labels:\n") |
|
printInfo(postingInfos) |
|
|
|
postingInfos = postingInfos[:0] |
|
lv, err := ir.SortedLabelValues("__name__") |
|
if err != nil { |
|
return err |
|
} |
|
for _, n := range lv { |
|
postings, err := ir.Postings("__name__", n) |
|
if err != nil { |
|
return err |
|
} |
|
count := 0 |
|
for postings.Next() { |
|
count++ |
|
} |
|
if postings.Err() != nil { |
|
return postings.Err() |
|
} |
|
postingInfos = append(postingInfos, postingInfo{n, uint64(count)}) |
|
} |
|
fmt.Printf("\nHighest cardinality metric names:\n") |
|
printInfo(postingInfos) |
|
|
|
if runExtended { |
|
return analyzeCompaction(block, ir) |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func analyzeCompaction(block tsdb.BlockReader, indexr tsdb.IndexReader) (err error) { |
|
postingsr, err := indexr.Postings(index.AllPostingsKey()) |
|
if err != nil { |
|
return err |
|
} |
|
chunkr, err := block.Chunks() |
|
if err != nil { |
|
return err |
|
} |
|
defer func() { |
|
err = tsdb_errors.NewMulti(err, chunkr.Close()).Err() |
|
}() |
|
|
|
const maxSamplesPerChunk = 120 |
|
nBuckets := 10 |
|
histogram := make([]int, nBuckets) |
|
totalChunks := 0 |
|
for postingsr.Next() { |
|
lbsl := labels.Labels{} |
|
var chks []chunks.Meta |
|
if err := indexr.Series(postingsr.At(), &lbsl, &chks); err != nil { |
|
return err |
|
} |
|
|
|
for _, chk := range chks { |
|
// Load the actual data of the chunk. |
|
chk, err := chunkr.Chunk(chk.Ref) |
|
if err != nil { |
|
return err |
|
} |
|
chunkSize := math.Min(float64(chk.NumSamples()), maxSamplesPerChunk) |
|
// Calculate the bucket for the chunk and increment it in the histogram. |
|
bucket := int(math.Ceil(float64(nBuckets)*chunkSize/maxSamplesPerChunk)) - 1 |
|
histogram[bucket]++ |
|
totalChunks++ |
|
} |
|
} |
|
|
|
fmt.Printf("\nCompaction analysis:\n") |
|
fmt.Println("Fullness: Amount of samples in chunks (100% is 120 samples)") |
|
// Normalize absolute counts to percentages and print them out. |
|
for bucket, count := range histogram { |
|
percentage := 100.0 * count / totalChunks |
|
fmt.Printf("%7d%%: ", (bucket+1)*10) |
|
for j := 0; j < percentage; j++ { |
|
fmt.Printf("#") |
|
} |
|
fmt.Println() |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func dumpSamples(path string, mint, maxt int64) (err error) { |
|
db, err := tsdb.OpenDBReadOnly(path, nil) |
|
if err != nil { |
|
return err |
|
} |
|
defer func() { |
|
err = tsdb_errors.NewMulti(err, db.Close()).Err() |
|
}() |
|
q, err := db.Querier(context.TODO(), mint, maxt) |
|
if err != nil { |
|
return err |
|
} |
|
defer q.Close() |
|
|
|
ss := q.Select(false, nil, labels.MustNewMatcher(labels.MatchRegexp, "", ".*")) |
|
|
|
for ss.Next() { |
|
series := ss.At() |
|
lbs := series.Labels() |
|
it := series.Iterator() |
|
for it.Next() { |
|
ts, val := it.At() |
|
fmt.Printf("%s %g %d\n", lbs, val, ts) |
|
} |
|
if it.Err() != nil { |
|
return ss.Err() |
|
} |
|
} |
|
|
|
if ws := ss.Warnings(); len(ws) > 0 { |
|
return tsdb_errors.NewMulti(ws...).Err() |
|
} |
|
|
|
if ss.Err() != nil { |
|
return ss.Err() |
|
} |
|
return nil |
|
} |
|
|
|
func checkErr(err error) int { |
|
if err != nil { |
|
fmt.Fprintln(os.Stderr, err) |
|
return 1 |
|
} |
|
return 0 |
|
} |
|
|
|
func backfillOpenMetrics(path, outputDir string, humanReadable, quiet bool, maxBlockDuration time.Duration) int { |
|
inputFile, err := fileutil.OpenMmapFile(path) |
|
if err != nil { |
|
return checkErr(err) |
|
} |
|
defer inputFile.Close() |
|
|
|
if err := os.MkdirAll(outputDir, 0o777); err != nil { |
|
return checkErr(fmt.Errorf("create output dir: %w", err)) |
|
} |
|
|
|
return checkErr(backfill(5000, inputFile.Bytes(), outputDir, humanReadable, quiet, maxBlockDuration)) |
|
}
|
|
|