mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1307 lines
34 KiB
1307 lines
34 KiB
// Copyright 2015 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package promql |
|
|
|
import ( |
|
"math" |
|
"regexp" |
|
"sort" |
|
"strconv" |
|
"strings" |
|
"time" |
|
|
|
"github.com/prometheus/common/model" |
|
"github.com/prometheus/prometheus/pkg/labels" |
|
) |
|
|
|
// Function represents a function of the expression language and is |
|
// used by function nodes. |
|
type Function struct { |
|
Name string |
|
ArgTypes []ValueType |
|
Variadic int |
|
ReturnType ValueType |
|
Call func(ev *evaluator, args Expressions) Value |
|
} |
|
|
|
// === time() float64 === |
|
func funcTime(ev *evaluator, args Expressions) Value { |
|
return Scalar{ |
|
V: float64(ev.Timestamp) / 1000, |
|
T: ev.Timestamp, |
|
} |
|
} |
|
|
|
// extrapolatedRate is a utility function for rate/increase/delta. |
|
// It calculates the rate (allowing for counter resets if isCounter is true), |
|
// extrapolates if the first/last sample is close to the boundary, and returns |
|
// the result as either per-second (if isRate is true) or overall. |
|
func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) Value { |
|
ms := arg.(*MatrixSelector) |
|
|
|
var ( |
|
matrix = ev.evalMatrix(ms) |
|
rangeStart = ev.Timestamp - durationMilliseconds(ms.Range+ms.Offset) |
|
rangeEnd = ev.Timestamp - durationMilliseconds(ms.Offset) |
|
resultVector = make(Vector, 0, len(matrix)) |
|
) |
|
|
|
for _, samples := range matrix { |
|
// No sense in trying to compute a rate without at least two points. Drop |
|
// this Vector element. |
|
if len(samples.Points) < 2 { |
|
continue |
|
} |
|
var ( |
|
counterCorrection float64 |
|
lastValue float64 |
|
) |
|
for _, sample := range samples.Points { |
|
if isCounter && sample.V < lastValue { |
|
counterCorrection += lastValue |
|
} |
|
lastValue = sample.V |
|
} |
|
resultValue := lastValue - samples.Points[0].V + counterCorrection |
|
|
|
// Duration between first/last samples and boundary of range. |
|
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000 |
|
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000 |
|
|
|
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000 |
|
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1) |
|
|
|
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 { |
|
// Counters cannot be negative. If we have any slope at |
|
// all (i.e. resultValue went up), we can extrapolate |
|
// the zero point of the counter. If the duration to the |
|
// zero point is shorter than the durationToStart, we |
|
// take the zero point as the start of the series, |
|
// thereby avoiding extrapolation to negative counter |
|
// values. |
|
durationToZero := sampledInterval * (samples.Points[0].V / resultValue) |
|
if durationToZero < durationToStart { |
|
durationToStart = durationToZero |
|
} |
|
} |
|
|
|
// If the first/last samples are close to the boundaries of the range, |
|
// extrapolate the result. This is as we expect that another sample |
|
// will exist given the spacing between samples we've seen thus far, |
|
// with an allowance for noise. |
|
extrapolationThreshold := averageDurationBetweenSamples * 1.1 |
|
extrapolateToInterval := sampledInterval |
|
|
|
if durationToStart < extrapolationThreshold { |
|
extrapolateToInterval += durationToStart |
|
} else { |
|
extrapolateToInterval += averageDurationBetweenSamples / 2 |
|
} |
|
if durationToEnd < extrapolationThreshold { |
|
extrapolateToInterval += durationToEnd |
|
} else { |
|
extrapolateToInterval += averageDurationBetweenSamples / 2 |
|
} |
|
resultValue = resultValue * (extrapolateToInterval / sampledInterval) |
|
if isRate { |
|
resultValue = resultValue / ms.Range.Seconds() |
|
} |
|
|
|
resultVector = append(resultVector, Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: resultValue, T: ev.Timestamp}, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === delta(Matrix ValueTypeMatrix) Vector === |
|
func funcDelta(ev *evaluator, args Expressions) Value { |
|
return extrapolatedRate(ev, args[0], false, false) |
|
} |
|
|
|
// === rate(node ValueTypeMatrix) Vector === |
|
func funcRate(ev *evaluator, args Expressions) Value { |
|
return extrapolatedRate(ev, args[0], true, true) |
|
} |
|
|
|
// === increase(node ValueTypeMatrix) Vector === |
|
func funcIncrease(ev *evaluator, args Expressions) Value { |
|
return extrapolatedRate(ev, args[0], true, false) |
|
} |
|
|
|
// === irate(node ValueTypeMatrix) Vector === |
|
func funcIrate(ev *evaluator, args Expressions) Value { |
|
return instantValue(ev, args[0], true) |
|
} |
|
|
|
// === idelta(node model.ValMatric) Vector === |
|
func funcIdelta(ev *evaluator, args Expressions) Value { |
|
return instantValue(ev, args[0], false) |
|
} |
|
|
|
func instantValue(ev *evaluator, arg Expr, isRate bool) Value { |
|
resultVector := Vector{} |
|
for _, samples := range ev.evalMatrix(arg) { |
|
// No sense in trying to compute a rate without at least two points. Drop |
|
// this Vector element. |
|
if len(samples.Points) < 2 { |
|
continue |
|
} |
|
|
|
lastSample := samples.Points[len(samples.Points)-1] |
|
previousSample := samples.Points[len(samples.Points)-2] |
|
|
|
var resultValue float64 |
|
if isRate && lastSample.V < previousSample.V { |
|
// Counter reset. |
|
resultValue = lastSample.V |
|
} else { |
|
resultValue = lastSample.V - previousSample.V |
|
} |
|
|
|
sampledInterval := lastSample.T - previousSample.T |
|
if sampledInterval == 0 { |
|
// Avoid dividing by 0. |
|
continue |
|
} |
|
|
|
if isRate { |
|
// Convert to per-second. |
|
resultValue /= float64(sampledInterval) / 1000 |
|
} |
|
|
|
resultVector = append(resultVector, Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: resultValue, T: ev.Timestamp}, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// Calculate the trend value at the given index i in raw data d. |
|
// This is somewhat analogous to the slope of the trend at the given index. |
|
// The argument "s" is the set of computed smoothed values. |
|
// The argument "b" is the set of computed trend factors. |
|
// The argument "d" is the set of raw input values. |
|
func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 { |
|
if i == 0 { |
|
return b[0] |
|
} |
|
|
|
x := tf * (s[i] - s[i-1]) |
|
y := (1 - tf) * b[i-1] |
|
|
|
// Cache the computed value. |
|
b[i] = x + y |
|
|
|
return b[i] |
|
} |
|
|
|
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. |
|
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current |
|
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects |
|
// how trends in historical data will affect the current data. A higher trend factor increases the influence. |
|
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". |
|
func funcHoltWinters(ev *evaluator, args Expressions) Value { |
|
mat := ev.evalMatrix(args[0]) |
|
|
|
// The smoothing factor argument. |
|
sf := ev.evalFloat(args[1]) |
|
|
|
// The trend factor argument. |
|
tf := ev.evalFloat(args[2]) |
|
|
|
// Sanity check the input. |
|
if sf <= 0 || sf >= 1 { |
|
ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 goT: %f", sf) |
|
} |
|
if tf <= 0 || tf >= 1 { |
|
ev.errorf("invalid trend factor. Expected: 0 < tf < 1 goT: %f", sf) |
|
} |
|
|
|
// Make an output Vector large enough to hold the entire result. |
|
resultVector := make(Vector, 0, len(mat)) |
|
|
|
// Create scratch values. |
|
var s, b, d []float64 |
|
|
|
var l int |
|
for _, samples := range mat { |
|
l = len(samples.Points) |
|
|
|
// Can't do the smoothing operation with less than two points. |
|
if l < 2 { |
|
continue |
|
} |
|
|
|
// Resize scratch values. |
|
if l != len(s) { |
|
s = make([]float64, l) |
|
b = make([]float64, l) |
|
d = make([]float64, l) |
|
} |
|
|
|
// Fill in the d values with the raw values from the input. |
|
for i, v := range samples.Points { |
|
d[i] = v.V |
|
} |
|
|
|
// Set initial values. |
|
s[0] = d[0] |
|
b[0] = d[1] - d[0] |
|
|
|
// Run the smoothing operation. |
|
var x, y float64 |
|
for i := 1; i < len(d); i++ { |
|
|
|
// Scale the raw value against the smoothing factor. |
|
x = sf * d[i] |
|
|
|
// Scale the last smoothed value with the trend at this point. |
|
y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d)) |
|
|
|
s[i] = x + y |
|
} |
|
|
|
resultVector = append(resultVector, Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: s[len(s)-1], T: ev.Timestamp}, // The last value in the Vector is the smoothed result. |
|
}) |
|
} |
|
|
|
return resultVector |
|
} |
|
|
|
// === sort(node ValueTypeVector) Vector === |
|
func funcSort(ev *evaluator, args Expressions) Value { |
|
// NaN should sort to the bottom, so take descending sort with NaN first and |
|
// reverse it. |
|
byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0])) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return Vector(byValueSorter) |
|
} |
|
|
|
// === sortDesc(node ValueTypeVector) Vector === |
|
func funcSortDesc(ev *evaluator, args Expressions) Value { |
|
// NaN should sort to the bottom, so take ascending sort with NaN first and |
|
// reverse it. |
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return Vector(byValueSorter) |
|
} |
|
|
|
// === clamp_max(Vector ValueTypeVector, max Scalar) Vector === |
|
func funcClampMax(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
max := ev.evalFloat(args[1]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Min(max, float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === clamp_min(Vector ValueTypeVector, min Scalar) Vector === |
|
func funcClampMin(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
min := ev.evalFloat(args[1]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Max(min, float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector === |
|
func funcRound(ev *evaluator, args Expressions) Value { |
|
// round returns a number rounded to toNearest. |
|
// Ties are solved by rounding up. |
|
toNearest := float64(1) |
|
if len(args) >= 2 { |
|
toNearest = ev.evalFloat(args[1]) |
|
} |
|
// Invert as it seems to cause fewer floating point accuracy issues. |
|
toNearestInverse := 1.0 / toNearest |
|
|
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Floor(float64(el.V)*toNearestInverse+0.5) / toNearestInverse |
|
} |
|
return vec |
|
} |
|
|
|
// === Scalar(node ValueTypeVector) Scalar === |
|
func funcScalar(ev *evaluator, args Expressions) Value { |
|
v := ev.evalVector(args[0]) |
|
if len(v) != 1 { |
|
return Scalar{ |
|
V: math.NaN(), |
|
T: ev.Timestamp, |
|
} |
|
} |
|
return Scalar{ |
|
V: v[0].V, |
|
T: ev.Timestamp, |
|
} |
|
} |
|
|
|
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]Point) float64) Value { |
|
mat := ev.evalMatrix(args[0]) |
|
resultVector := Vector{} |
|
|
|
for _, el := range mat { |
|
if len(el.Points) == 0 { |
|
continue |
|
} |
|
|
|
resultVector = append(resultVector, Sample{ |
|
Metric: dropMetricName(el.Metric), |
|
Point: Point{V: aggrFn(el.Points), T: ev.Timestamp}, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === avg_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcAvgOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
var sum float64 |
|
for _, v := range values { |
|
sum += v.V |
|
} |
|
return sum / float64(len(values)) |
|
}) |
|
} |
|
|
|
// === count_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcCountOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
return float64(len(values)) |
|
}) |
|
} |
|
|
|
// === floor(Vector ValueTypeVector) Vector === |
|
func funcFloor(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Floor(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === max_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcMaxOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
max := math.Inf(-1) |
|
for _, v := range values { |
|
max = math.Max(max, float64(v.V)) |
|
} |
|
return max |
|
}) |
|
} |
|
|
|
// === min_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcMinOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
min := math.Inf(1) |
|
for _, v := range values { |
|
min = math.Min(min, float64(v.V)) |
|
} |
|
return min |
|
}) |
|
} |
|
|
|
// === sum_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcSumOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
var sum float64 |
|
for _, v := range values { |
|
sum += v.V |
|
} |
|
return sum |
|
}) |
|
} |
|
|
|
// === quantile_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcQuantileOverTime(ev *evaluator, args Expressions) Value { |
|
q := ev.evalFloat(args[0]) |
|
mat := ev.evalMatrix(args[1]) |
|
resultVector := Vector{} |
|
|
|
for _, el := range mat { |
|
if len(el.Points) == 0 { |
|
continue |
|
} |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
values := make(vectorByValueHeap, 0, len(el.Points)) |
|
for _, v := range el.Points { |
|
values = append(values, Sample{Point: Point{V: v.V}}) |
|
} |
|
resultVector = append(resultVector, Sample{ |
|
Metric: el.Metric, |
|
Point: Point{V: quantile(q, values), T: ev.Timestamp}, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === stddev_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcStddevOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
var sum, squaredSum, count float64 |
|
for _, v := range values { |
|
sum += v.V |
|
squaredSum += v.V * v.V |
|
count++ |
|
} |
|
avg := sum / count |
|
return math.Sqrt(float64(squaredSum/count - avg*avg)) |
|
}) |
|
} |
|
|
|
// === stdvar_over_time(Matrix ValueTypeMatrix) Vector === |
|
func funcStdvarOverTime(ev *evaluator, args Expressions) Value { |
|
return aggrOverTime(ev, args, func(values []Point) float64 { |
|
var sum, squaredSum, count float64 |
|
for _, v := range values { |
|
sum += v.V |
|
squaredSum += v.V * v.V |
|
count++ |
|
} |
|
avg := sum / count |
|
return squaredSum/count - avg*avg |
|
}) |
|
} |
|
|
|
// === abs(Vector ValueTypeVector) Vector === |
|
func funcAbs(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Abs(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === absent(Vector ValueTypeVector) Vector === |
|
func funcAbsent(ev *evaluator, args Expressions) Value { |
|
if len(ev.evalVector(args[0])) > 0 { |
|
return Vector{} |
|
} |
|
m := []labels.Label{} |
|
|
|
if vs, ok := args[0].(*VectorSelector); ok { |
|
for _, ma := range vs.LabelMatchers { |
|
if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName { |
|
m = append(m, labels.Label{Name: ma.Name, Value: ma.Value}) |
|
} |
|
} |
|
} |
|
return Vector{ |
|
Sample{ |
|
Metric: labels.New(m...), |
|
Point: Point{V: 1, T: ev.Timestamp}, |
|
}, |
|
} |
|
} |
|
|
|
// === ceil(Vector ValueTypeVector) Vector === |
|
func funcCeil(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Ceil(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === exp(Vector ValueTypeVector) Vector === |
|
func funcExp(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Exp(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === sqrt(Vector VectorNode) Vector === |
|
func funcSqrt(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Sqrt(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === ln(Vector ValueTypeVector) Vector === |
|
func funcLn(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Log(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === log2(Vector ValueTypeVector) Vector === |
|
func funcLog2(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Log2(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === log10(Vector ValueTypeVector) Vector === |
|
func funcLog10(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = math.Log10(float64(el.V)) |
|
} |
|
return vec |
|
} |
|
|
|
// === timestamp(Vector ValueTypeVector) Vector === |
|
func funcTimestamp(ev *evaluator, args Expressions) Value { |
|
vec := ev.evalVector(args[0]) |
|
for i := range vec { |
|
el := &vec[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
el.V = float64(el.T) / 1000.0 |
|
} |
|
return vec |
|
} |
|
|
|
// linearRegression performs a least-square linear regression analysis on the |
|
// provided SamplePairs. It returns the slope, and the intercept value at the |
|
// provided time. |
|
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) { |
|
var ( |
|
n float64 |
|
sumX, sumY float64 |
|
sumXY, sumX2 float64 |
|
) |
|
for _, sample := range samples { |
|
x := float64(sample.T-interceptTime) / 1e3 |
|
n += 1.0 |
|
sumY += sample.V |
|
sumX += x |
|
sumXY += x * sample.V |
|
sumX2 += x * x |
|
} |
|
covXY := sumXY - sumX*sumY/n |
|
varX := sumX2 - sumX*sumX/n |
|
|
|
slope = covXY / varX |
|
intercept = sumY/n - slope*sumX/n |
|
return slope, intercept |
|
} |
|
|
|
// === deriv(node ValueTypeMatrix) Vector === |
|
func funcDeriv(ev *evaluator, args Expressions) Value { |
|
mat := ev.evalMatrix(args[0]) |
|
resultVector := make(Vector, 0, len(mat)) |
|
|
|
for _, samples := range mat { |
|
// No sense in trying to compute a derivative without at least two points. |
|
// Drop this Vector element. |
|
if len(samples.Points) < 2 { |
|
continue |
|
} |
|
|
|
// We pass in an arbitrary timestamp that is near the values in use |
|
// to avoid floating point accuracy issues, see |
|
// https://github.com/prometheus/prometheus/issues/2674 |
|
slope, _ := linearRegression(samples.Points, samples.Points[0].T) |
|
resultSample := Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: slope, T: ev.Timestamp}, |
|
} |
|
|
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector === |
|
func funcPredictLinear(ev *evaluator, args Expressions) Value { |
|
mat := ev.evalMatrix(args[0]) |
|
resultVector := make(Vector, 0, len(mat)) |
|
duration := ev.evalFloat(args[1]) |
|
|
|
for _, samples := range mat { |
|
// No sense in trying to predict anything without at least two points. |
|
// Drop this Vector element. |
|
if len(samples.Points) < 2 { |
|
continue |
|
} |
|
slope, intercept := linearRegression(samples.Points, ev.Timestamp) |
|
|
|
resultVector = append(resultVector, Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: slope*duration + intercept, T: ev.Timestamp}, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector === |
|
func funcHistogramQuantile(ev *evaluator, args Expressions) Value { |
|
q := ev.evalFloat(args[0]) |
|
inVec := ev.evalVector(args[1]) |
|
|
|
outVec := Vector{} |
|
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} |
|
for _, el := range inVec { |
|
upperBound, err := strconv.ParseFloat( |
|
el.Metric.Get(model.BucketLabel), 64, |
|
) |
|
if err != nil { |
|
// Oops, no bucket label or malformed label value. Skip. |
|
// TODO(beorn7): Issue a warning somehow. |
|
continue |
|
} |
|
hash := hashWithoutLabels(el.Metric, excludedLabels...) |
|
|
|
mb, ok := signatureToMetricWithBuckets[hash] |
|
if !ok { |
|
el.Metric = labels.NewBuilder(el.Metric). |
|
Del(labels.BucketLabel, labels.MetricName). |
|
Labels() |
|
|
|
mb = &metricWithBuckets{el.Metric, nil} |
|
signatureToMetricWithBuckets[hash] = mb |
|
} |
|
mb.buckets = append(mb.buckets, bucket{upperBound, el.V}) |
|
} |
|
|
|
for _, mb := range signatureToMetricWithBuckets { |
|
outVec = append(outVec, Sample{ |
|
Metric: mb.metric, |
|
Point: Point{V: bucketQuantile(q, mb.buckets), T: ev.Timestamp}, |
|
}) |
|
} |
|
|
|
return outVec |
|
} |
|
|
|
// === resets(Matrix ValueTypeMatrix) Vector === |
|
func funcResets(ev *evaluator, args Expressions) Value { |
|
in := ev.evalMatrix(args[0]) |
|
out := make(Vector, 0, len(in)) |
|
|
|
for _, samples := range in { |
|
resets := 0 |
|
prev := samples.Points[0].V |
|
for _, sample := range samples.Points[1:] { |
|
current := sample.V |
|
if current < prev { |
|
resets++ |
|
} |
|
prev = current |
|
} |
|
|
|
out = append(out, Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: float64(resets), T: ev.Timestamp}, |
|
}) |
|
} |
|
return out |
|
} |
|
|
|
// === changes(Matrix ValueTypeMatrix) Vector === |
|
func funcChanges(ev *evaluator, args Expressions) Value { |
|
in := ev.evalMatrix(args[0]) |
|
out := make(Vector, 0, len(in)) |
|
|
|
for _, samples := range in { |
|
changes := 0 |
|
prev := samples.Points[0].V |
|
for _, sample := range samples.Points[1:] { |
|
current := sample.V |
|
if current != prev && !(math.IsNaN(float64(current)) && math.IsNaN(float64(prev))) { |
|
changes++ |
|
} |
|
prev = current |
|
} |
|
|
|
out = append(out, Sample{ |
|
Metric: dropMetricName(samples.Metric), |
|
Point: Point{V: float64(changes), T: ev.Timestamp}, |
|
}) |
|
} |
|
return out |
|
} |
|
|
|
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector === |
|
func funcLabelReplace(ev *evaluator, args Expressions) Value { |
|
var ( |
|
vector = ev.evalVector(args[0]) |
|
dst = ev.evalString(args[1]).V |
|
repl = ev.evalString(args[2]).V |
|
src = ev.evalString(args[3]).V |
|
regexStr = ev.evalString(args[4]).V |
|
) |
|
|
|
regex, err := regexp.Compile("^(?:" + regexStr + ")$") |
|
if err != nil { |
|
ev.errorf("invalid regular expression in label_replace(): %s", regexStr) |
|
} |
|
if !model.LabelNameRE.MatchString(string(dst)) { |
|
ev.errorf("invalid destination label name in label_replace(): %s", dst) |
|
} |
|
|
|
outSet := make(map[uint64]struct{}, len(vector)) |
|
for i := range vector { |
|
el := &vector[i] |
|
|
|
srcVal := el.Metric.Get(src) |
|
indexes := regex.FindStringSubmatchIndex(srcVal) |
|
// If there is no match, no replacement should take place. |
|
if indexes == nil { |
|
continue |
|
} |
|
res := regex.ExpandString([]byte{}, repl, srcVal, indexes) |
|
|
|
lb := labels.NewBuilder(el.Metric).Del(dst) |
|
if len(res) > 0 { |
|
lb.Set(dst, string(res)) |
|
} |
|
el.Metric = lb.Labels() |
|
|
|
h := el.Metric.Hash() |
|
if _, ok := outSet[h]; ok { |
|
ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric) |
|
} else { |
|
outSet[h] = struct{}{} |
|
} |
|
} |
|
|
|
return vector |
|
} |
|
|
|
// === Vector(s Scalar) Vector === |
|
func funcVector(ev *evaluator, args Expressions) Value { |
|
return Vector{ |
|
Sample{ |
|
Metric: labels.Labels{}, |
|
Point: Point{V: ev.evalFloat(args[0]), T: ev.Timestamp}, |
|
}, |
|
} |
|
} |
|
|
|
// === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector === |
|
func funcLabelJoin(ev *evaluator, args Expressions) Value { |
|
var ( |
|
vector = ev.evalVector(args[0]) |
|
dst = ev.evalString(args[1]).V |
|
sep = ev.evalString(args[2]).V |
|
srcLabels = make([]string, len(args)-3) |
|
) |
|
for i := 3; i < len(args); i++ { |
|
src := ev.evalString(args[i]).V |
|
if !model.LabelName(src).IsValid() { |
|
ev.errorf("invalid source label name in label_join(): %s", src) |
|
} |
|
srcLabels[i-3] = src |
|
} |
|
|
|
if !model.LabelName(dst).IsValid() { |
|
ev.errorf("invalid destination label name in label_join(): %s", dst) |
|
} |
|
|
|
outSet := make(map[uint64]struct{}, len(vector)) |
|
for i := range vector { |
|
el := &vector[i] |
|
|
|
srcVals := make([]string, len(srcLabels)) |
|
for i, src := range srcLabels { |
|
srcVals[i] = el.Metric.Get(src) |
|
} |
|
|
|
lb := labels.NewBuilder(el.Metric) |
|
|
|
strval := strings.Join(srcVals, sep) |
|
if strval == "" { |
|
lb.Del(dst) |
|
} else { |
|
lb.Set(dst, strval) |
|
} |
|
|
|
el.Metric = lb.Labels() |
|
h := el.Metric.Hash() |
|
|
|
if _, exists := outSet[h]; exists { |
|
ev.errorf("duplicated label set in output of label_join(): %s", el.Metric) |
|
} else { |
|
outSet[h] = struct{}{} |
|
} |
|
} |
|
return vector |
|
} |
|
|
|
// Common code for date related functions. |
|
func dateWrapper(ev *evaluator, args Expressions, f func(time.Time) float64) Value { |
|
var v Vector |
|
if len(args) == 0 { |
|
v = Vector{ |
|
Sample{ |
|
Metric: labels.Labels{}, |
|
Point: Point{V: float64(ev.Timestamp) / 1000, T: ev.Timestamp}, |
|
}, |
|
} |
|
} else { |
|
v = ev.evalVector(args[0]) |
|
} |
|
for i := range v { |
|
el := &v[i] |
|
|
|
el.Metric = dropMetricName(el.Metric) |
|
t := time.Unix(int64(el.V), 0).UTC() |
|
el.V = f(t) |
|
} |
|
return v |
|
} |
|
|
|
// === days_in_month(v Vector) Scalar === |
|
func funcDaysInMonth(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day()) |
|
}) |
|
} |
|
|
|
// === day_of_month(v Vector) Scalar === |
|
func funcDayOfMonth(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(t.Day()) |
|
}) |
|
} |
|
|
|
// === day_of_week(v Vector) Scalar === |
|
func funcDayOfWeek(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(t.Weekday()) |
|
}) |
|
} |
|
|
|
// === hour(v Vector) Scalar === |
|
func funcHour(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(t.Hour()) |
|
}) |
|
} |
|
|
|
// === minute(v Vector) Scalar === |
|
func funcMinute(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(t.Minute()) |
|
}) |
|
} |
|
|
|
// === month(v Vector) Scalar === |
|
func funcMonth(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(t.Month()) |
|
}) |
|
} |
|
|
|
// === year(v Vector) Scalar === |
|
func funcYear(ev *evaluator, args Expressions) Value { |
|
return dateWrapper(ev, args, func(t time.Time) float64 { |
|
return float64(t.Year()) |
|
}) |
|
} |
|
|
|
var functions = map[string]*Function{ |
|
"abs": { |
|
Name: "abs", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcAbs, |
|
}, |
|
"absent": { |
|
Name: "absent", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcAbsent, |
|
}, |
|
"avg_over_time": { |
|
Name: "avg_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcAvgOverTime, |
|
}, |
|
"ceil": { |
|
Name: "ceil", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcCeil, |
|
}, |
|
"changes": { |
|
Name: "changes", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcChanges, |
|
}, |
|
"clamp_max": { |
|
Name: "clamp_max", |
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcClampMax, |
|
}, |
|
"clamp_min": { |
|
Name: "clamp_min", |
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcClampMin, |
|
}, |
|
"count_over_time": { |
|
Name: "count_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcCountOverTime, |
|
}, |
|
"days_in_month": { |
|
Name: "days_in_month", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcDaysInMonth, |
|
}, |
|
"day_of_month": { |
|
Name: "day_of_month", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcDayOfMonth, |
|
}, |
|
"day_of_week": { |
|
Name: "day_of_week", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcDayOfWeek, |
|
}, |
|
"delta": { |
|
Name: "delta", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcDelta, |
|
}, |
|
"deriv": { |
|
Name: "deriv", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcDeriv, |
|
}, |
|
"exp": { |
|
Name: "exp", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcExp, |
|
}, |
|
"floor": { |
|
Name: "floor", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcFloor, |
|
}, |
|
"histogram_quantile": { |
|
Name: "histogram_quantile", |
|
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcHistogramQuantile, |
|
}, |
|
"holt_winters": { |
|
Name: "holt_winters", |
|
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcHoltWinters, |
|
}, |
|
"hour": { |
|
Name: "hour", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcHour, |
|
}, |
|
"idelta": { |
|
Name: "idelta", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcIdelta, |
|
}, |
|
"increase": { |
|
Name: "increase", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcIncrease, |
|
}, |
|
"irate": { |
|
Name: "irate", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcIrate, |
|
}, |
|
"label_replace": { |
|
Name: "label_replace", |
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcLabelReplace, |
|
}, |
|
"label_join": { |
|
Name: "label_join", |
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString}, |
|
Variadic: -1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcLabelJoin, |
|
}, |
|
"ln": { |
|
Name: "ln", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcLn, |
|
}, |
|
"log10": { |
|
Name: "log10", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcLog10, |
|
}, |
|
"log2": { |
|
Name: "log2", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcLog2, |
|
}, |
|
"max_over_time": { |
|
Name: "max_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcMaxOverTime, |
|
}, |
|
"min_over_time": { |
|
Name: "min_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcMinOverTime, |
|
}, |
|
"minute": { |
|
Name: "minute", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcMinute, |
|
}, |
|
"month": { |
|
Name: "month", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcMonth, |
|
}, |
|
"predict_linear": { |
|
Name: "predict_linear", |
|
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcPredictLinear, |
|
}, |
|
"quantile_over_time": { |
|
Name: "quantile_over_time", |
|
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcQuantileOverTime, |
|
}, |
|
"rate": { |
|
Name: "rate", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcRate, |
|
}, |
|
"resets": { |
|
Name: "resets", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcResets, |
|
}, |
|
"round": { |
|
Name: "round", |
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcRound, |
|
}, |
|
"scalar": { |
|
Name: "scalar", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeScalar, |
|
Call: funcScalar, |
|
}, |
|
"sort": { |
|
Name: "sort", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcSort, |
|
}, |
|
"sort_desc": { |
|
Name: "sort_desc", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcSortDesc, |
|
}, |
|
"sqrt": { |
|
Name: "sqrt", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcSqrt, |
|
}, |
|
"stddev_over_time": { |
|
Name: "stddev_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcStddevOverTime, |
|
}, |
|
"stdvar_over_time": { |
|
Name: "stdvar_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcStdvarOverTime, |
|
}, |
|
"sum_over_time": { |
|
Name: "sum_over_time", |
|
ArgTypes: []ValueType{ValueTypeMatrix}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcSumOverTime, |
|
}, |
|
"time": { |
|
Name: "time", |
|
ArgTypes: []ValueType{}, |
|
ReturnType: ValueTypeScalar, |
|
Call: funcTime, |
|
}, |
|
"timestamp": { |
|
Name: "timestamp", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcTimestamp, |
|
}, |
|
"vector": { |
|
Name: "vector", |
|
ArgTypes: []ValueType{ValueTypeScalar}, |
|
ReturnType: ValueTypeVector, |
|
Call: funcVector, |
|
}, |
|
"year": { |
|
Name: "year", |
|
ArgTypes: []ValueType{ValueTypeVector}, |
|
Variadic: 1, |
|
ReturnType: ValueTypeVector, |
|
Call: funcYear, |
|
}, |
|
} |
|
|
|
// getFunction returns a predefined Function object for the given name. |
|
func getFunction(name string) (*Function, bool) { |
|
function, ok := functions[name] |
|
return function, ok |
|
} |
|
|
|
type vectorByValueHeap Vector |
|
|
|
func (s vectorByValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool { |
|
if math.IsNaN(float64(s[i].V)) { |
|
return true |
|
} |
|
return s[i].V < s[j].V |
|
} |
|
|
|
func (s vectorByValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) { |
|
*s = append(*s, *(x.(*Sample))) |
|
} |
|
|
|
func (s *vectorByValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
} |
|
|
|
type vectorByReverseValueHeap Vector |
|
|
|
func (s vectorByReverseValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByReverseValueHeap) Less(i, j int) bool { |
|
if math.IsNaN(float64(s[i].V)) { |
|
return true |
|
} |
|
return s[i].V > s[j].V |
|
} |
|
|
|
func (s vectorByReverseValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByReverseValueHeap) Push(x interface{}) { |
|
*s = append(*s, *(x.(*Sample))) |
|
} |
|
|
|
func (s *vectorByReverseValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
}
|
|
|