You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/storage/local/series.go

595 lines
18 KiB

// Copyright 2014 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package local
import (
"math"
"sort"
"sync"
"sync/atomic"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
)
// chunkDescEvictionFactor is a factor used for chunkDesc eviction (as opposed
// to evictions of chunks, see method evictOlderThan. A chunk takes about 20x
// more memory than a chunkDesc. With a chunkDescEvictionFactor of 10, not more
// than a third of the total memory taken by a series will be used for
// chunkDescs.
const chunkDescEvictionFactor = 10
// fingerprintSeriesPair pairs a fingerprint with a memorySeries pointer.
type fingerprintSeriesPair struct {
fp clientmodel.Fingerprint
series *memorySeries
}
// seriesMap maps fingerprints to memory series. All its methods are
// goroutine-safe. A SeriesMap is effectively is a goroutine-safe version of
// map[clientmodel.Fingerprint]*memorySeries.
type seriesMap struct {
mtx sync.RWMutex
m map[clientmodel.Fingerprint]*memorySeries
}
// newSeriesMap returns a newly allocated empty seriesMap. To create a seriesMap
// based on a prefilled map, use an explicit initializer.
func newSeriesMap() *seriesMap {
return &seriesMap{m: make(map[clientmodel.Fingerprint]*memorySeries)}
}
// length returns the number of mappings in the seriesMap.
func (sm *seriesMap) length() int {
sm.mtx.RLock()
defer sm.mtx.RUnlock()
return len(sm.m)
}
// get returns a memorySeries for a fingerprint. Return values have the same
// semantics as the native Go map.
func (sm *seriesMap) get(fp clientmodel.Fingerprint) (s *memorySeries, ok bool) {
sm.mtx.RLock()
defer sm.mtx.RUnlock()
s, ok = sm.m[fp]
return
}
// put adds a mapping to the seriesMap. It panics if s == nil.
func (sm *seriesMap) put(fp clientmodel.Fingerprint, s *memorySeries) {
sm.mtx.Lock()
defer sm.mtx.Unlock()
if s == nil {
panic("tried to add nil pointer to seriesMap")
}
sm.m[fp] = s
}
// del removes a mapping from the series Map.
func (sm *seriesMap) del(fp clientmodel.Fingerprint) {
sm.mtx.Lock()
defer sm.mtx.Unlock()
delete(sm.m, fp)
}
// iter returns a channel that produces all mappings in the seriesMap. The
// channel will be closed once all fingerprints have been received. Not
// consuming all fingerprints from the channel will leak a goroutine. The
// semantics of concurrent modification of seriesMap is the similar as the one
// for iterating over a map with a 'range' clause. However, if the next element
// in iteration order is removed after the current element has been received
// from the channel, it will still be produced by the channel.
func (sm *seriesMap) iter() <-chan fingerprintSeriesPair {
ch := make(chan fingerprintSeriesPair)
go func() {
sm.mtx.RLock()
for fp, s := range sm.m {
sm.mtx.RUnlock()
ch <- fingerprintSeriesPair{fp, s}
sm.mtx.RLock()
}
sm.mtx.RUnlock()
close(ch)
}()
return ch
}
// fpIter returns a channel that produces all fingerprints in the seriesMap. The
// channel will be closed once all fingerprints have been received. Not
// consuming all fingerprints from the channel will leak a goroutine. The
// semantics of concurrent modification of seriesMap is the similar as the one
// for iterating over a map with a 'range' clause. However, if the next element
// in iteration order is removed after the current element has been received
// from the channel, it will still be produced by the channel.
func (sm *seriesMap) fpIter() <-chan clientmodel.Fingerprint {
ch := make(chan clientmodel.Fingerprint)
go func() {
sm.mtx.RLock()
for fp := range sm.m {
sm.mtx.RUnlock()
ch <- fp
sm.mtx.RLock()
}
sm.mtx.RUnlock()
close(ch)
}()
return ch
}
type memorySeries struct {
metric clientmodel.Metric
// Sorted by start time, overlapping chunk ranges are forbidden.
chunkDescs []*chunkDesc
// Whether chunkDescs for chunks on disk are all loaded. If false, some
// (or all) chunkDescs are only on disk. These chunks are all contiguous
// and at the tail end.
chunkDescsLoaded bool
// Whether the current head chunk has already been scheduled to be
// persisted. If true, the current head chunk must not be modified
// anymore.
headChunkPersisted bool
}
// newMemorySeries returns a pointer to a newly allocated memorySeries for the
// given metric. reallyNew defines if the memorySeries is a genuinely new series
// or (if false) a series for a metric being unarchived, i.e. a series that
// existed before but has been evicted from memory.
func newMemorySeries(m clientmodel.Metric, reallyNew bool) *memorySeries {
return &memorySeries{
metric: m,
chunkDescsLoaded: reallyNew,
headChunkPersisted: !reallyNew,
}
}
// add adds a sample pair to the series.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) add(fp clientmodel.Fingerprint, v *metric.SamplePair, persistQueue chan *persistRequest) {
if len(s.chunkDescs) == 0 || s.headChunkPersisted {
newHead := newChunkDesc(newDeltaEncodedChunk(d1, d0, true))
s.chunkDescs = append(s.chunkDescs, newHead)
s.headChunkPersisted = false
}
chunks := s.head().add(v)
s.head().chunk = chunks[0]
if len(chunks) > 1 {
queuePersist := func(cd *chunkDesc) {
persistQueue <- &persistRequest{
fingerprint: fp,
chunkDesc: cd,
}
}
queuePersist(s.head())
for i, c := range chunks[1:] {
cd := newChunkDesc(c)
s.chunkDescs = append(s.chunkDescs, cd)
// The last chunk is still growing.
if i < len(chunks[1:])-1 {
queuePersist(cd)
}
}
}
}
// evictOlderThan marks for eviction all chunks whose latest sample is older
// than the given timestamp. It returns true if all chunks in the series were
// immediately evicted (i.e. all chunks are older than the timestamp, and none
// of the chunks was pinned).
//
// The method also evicts chunkDescs if there are chunkDescEvictionFactor times
// more chunkDescs in the series than unevicted chunks. (The number of unevicted
// chunks is considered the number of chunks between (and including) the oldest
// chunk that could not be evicted immediately and the newest chunk in the
// series, even if chunks in between were evicted.)
//
// Special considerations for the head chunk: If it has not been scheduled to be
// persisted yet but is old enough for eviction, the scheduling happens now. (To
// do that, the method neets the fingerprint and the persist queue.) It is
// likely that the actual persisting will not happen soon enough to immediately
// evict the head chunk, though. Thus, calling evictOlderThan for a series with
// a non-persisted head chunk will most likely return false, even if no chunk is
// pinned for other reasons. A series old enough for archiving will usually
// require at least two eviction runs to become ready for archiving: In the
// first run, its head chunk is scheduled to be persisted. The next call of
// evictOlderThan will then return true, provided that the series hasn't
// received new samples in the meantime, the head chunk has now been persisted,
// and no chunk is pinned for other reasons.
//
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) evictOlderThan(
t clientmodel.Timestamp,
fp clientmodel.Fingerprint,
persistQueue chan *persistRequest,
) bool {
allEvicted := true
iOldestNotEvicted := -1
defer func() {
// Evict chunkDescs if there are chunkDescEvictionFactor times
// more than non-evicted chunks and we are not going to archive
// the whole series anyway.
if iOldestNotEvicted != -1 {
lenToKeep := chunkDescEvictionFactor * (len(s.chunkDescs) - iOldestNotEvicted)
if lenToKeep < len(s.chunkDescs) {
s.chunkDescsLoaded = false
lenEvicted := len(s.chunkDescs) - lenToKeep
chunkDescOps.WithLabelValues(evict).Add(float64(lenEvicted))
atomic.AddInt64(&numMemChunkDescs, -int64(lenEvicted))
s.chunkDescs = append(
make([]*chunkDesc, 0, lenToKeep),
s.chunkDescs[lenEvicted:]...,
)
}
}
}()
// For now, always drop the entire range from oldest to t.
for i, cd := range s.chunkDescs {
if !cd.lastTime().Before(t) {
if iOldestNotEvicted == -1 {
iOldestNotEvicted = i
}
return false
}
if cd.isEvicted() {
continue
}
if !s.headChunkPersisted && i == len(s.chunkDescs)-1 {
// This is a non-persisted head chunk that is old enough
// for eviction. Queue it to be persisted:
s.headChunkPersisted = true
persistQueue <- &persistRequest{
fingerprint: fp,
chunkDesc: cd,
}
}
if !cd.evictOnUnpin() {
if iOldestNotEvicted == -1 {
iOldestNotEvicted = i
}
allEvicted = false
}
}
return allEvicted
}
// purgeOlderThan returns true if all chunks have been purged.
//
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) purgeOlderThan(t clientmodel.Timestamp) bool {
keepIdx := len(s.chunkDescs)
for i, cd := range s.chunkDescs {
if !cd.lastTime().Before(t) {
keepIdx = i
break
}
s.chunkDescs[i].evictOnUnpin()
}
s.chunkDescs = append(make([]*chunkDesc, 0, len(s.chunkDescs)-keepIdx), s.chunkDescs[keepIdx:]...)
atomic.AddInt64(&numMemChunkDescs, -int64(keepIdx))
return len(s.chunkDescs) == 0
}
// preloadChunks is an internal helper method.
func (s *memorySeries) preloadChunks(indexes []int, p *persistence) ([]*chunkDesc, error) {
loadIndexes := []int{}
pinnedChunkDescs := make([]*chunkDesc, 0, len(indexes))
for _, idx := range indexes {
cd := s.chunkDescs[idx]
pinnedChunkDescs = append(pinnedChunkDescs, cd)
cd.pin() // Have to pin everything first to prevent concurrent evictOnUnpin later.
if cd.isEvicted() {
loadIndexes = append(loadIndexes, idx)
}
}
chunkOps.WithLabelValues(pin).Add(float64(len(pinnedChunkDescs)))
if len(loadIndexes) > 0 {
fp := s.metric.Fingerprint()
chunks, err := p.loadChunks(fp, loadIndexes)
if err != nil {
// Unpin the chunks since we won't return them as pinned chunks now.
for _, cd := range pinnedChunkDescs {
cd.unpin()
}
chunkOps.WithLabelValues(unpin).Add(float64(len(pinnedChunkDescs)))
return nil, err
}
for i, c := range chunks {
s.chunkDescs[loadIndexes[i]].setChunk(c)
}
chunkOps.WithLabelValues(load).Add(float64(len(chunks)))
atomic.AddInt64(&numMemChunks, int64(len(chunks)))
}
return pinnedChunkDescs, nil
}
/*
func (s *memorySeries) preloadChunksAtTime(t clientmodel.Timestamp, p *persistence) (chunkDescs, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
if len(s.chunkDescs) == 0 {
return nil, nil
}
var pinIndexes []int
// Find first chunk where lastTime() is after or equal to t.
i := sort.Search(len(s.chunkDescs), func(i int) bool {
return !s.chunkDescs[i].lastTime().Before(t)
})
switch i {
case 0:
pinIndexes = []int{0}
case len(s.chunkDescs):
pinIndexes = []int{i - 1}
default:
if s.chunkDescs[i].contains(t) {
pinIndexes = []int{i}
} else {
pinIndexes = []int{i - 1, i}
}
}
return s.preloadChunks(pinIndexes, p)
}
*/
// preloadChunksForRange loads chunks for the given range from the persistence.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) preloadChunksForRange(
from clientmodel.Timestamp, through clientmodel.Timestamp,
fp clientmodel.Fingerprint, p *persistence,
) ([]*chunkDesc, error) {
firstChunkDescTime := clientmodel.Timestamp(math.MaxInt64)
if len(s.chunkDescs) > 0 {
firstChunkDescTime = s.chunkDescs[0].firstTime()
}
if !s.chunkDescsLoaded && from.Before(firstChunkDescTime) {
cds, err := p.loadChunkDescs(fp, firstChunkDescTime)
if err != nil {
return nil, err
}
s.chunkDescs = append(cds, s.chunkDescs...)
s.chunkDescsLoaded = true
}
if len(s.chunkDescs) == 0 {
return nil, nil
}
// Find first chunk with start time after "from".
fromIdx := sort.Search(len(s.chunkDescs), func(i int) bool {
return s.chunkDescs[i].firstTime().After(from)
})
// Find first chunk with start time after "through".
throughIdx := sort.Search(len(s.chunkDescs), func(i int) bool {
return s.chunkDescs[i].firstTime().After(through)
})
if fromIdx > 0 {
fromIdx--
}
if throughIdx == len(s.chunkDescs) {
throughIdx--
}
pinIndexes := make([]int, 0, throughIdx-fromIdx+1)
for i := fromIdx; i <= throughIdx; i++ {
pinIndexes = append(pinIndexes, i)
}
return s.preloadChunks(pinIndexes, p)
}
func (s *memorySeries) newIterator(lockFunc, unlockFunc func()) SeriesIterator {
chunks := make([]chunk, 0, len(s.chunkDescs))
for i, cd := range s.chunkDescs {
if !cd.isEvicted() {
if i == len(s.chunkDescs)-1 {
chunkOps.WithLabelValues(clone).Inc()
chunks = append(chunks, cd.chunk.clone())
} else {
chunks = append(chunks, cd.chunk)
}
}
}
return &memorySeriesIterator{
lock: lockFunc,
unlock: unlockFunc,
chunks: chunks,
}
}
func (s *memorySeries) head() *chunkDesc {
return s.chunkDescs[len(s.chunkDescs)-1]
}
func (s *memorySeries) values() metric.Values {
var values metric.Values
for _, cd := range s.chunkDescs {
for sample := range cd.chunk.values() {
values = append(values, *sample)
}
}
return values
}
func (s *memorySeries) firstTime() clientmodel.Timestamp {
return s.chunkDescs[0].firstTime()
}
func (s *memorySeries) lastTime() clientmodel.Timestamp {
return s.head().lastTime()
}
// memorySeriesIterator implements SeriesIterator.
type memorySeriesIterator struct {
lock, unlock func()
chunkIt chunkIterator
chunks []chunk
}
// GetValueAtTime implements SeriesIterator.
func (it *memorySeriesIterator) GetValueAtTime(t clientmodel.Timestamp) metric.Values {
it.lock()
defer it.unlock()
// The most common case. We are iterating through a chunk.
if it.chunkIt != nil && it.chunkIt.contains(t) {
return it.chunkIt.getValueAtTime(t)
}
it.chunkIt = nil
if len(it.chunks) == 0 {
return nil
}
// Before or exactly on the first sample of the series.
if !t.After(it.chunks[0].firstTime()) {
// return first value of first chunk
return it.chunks[0].newIterator().getValueAtTime(t)
}
// After or exactly on the last sample of the series.
if !t.Before(it.chunks[len(it.chunks)-1].lastTime()) {
// return last value of last chunk
return it.chunks[len(it.chunks)-1].newIterator().getValueAtTime(t)
}
// Find first chunk where lastTime() is after or equal to t.
i := sort.Search(len(it.chunks), func(i int) bool {
return !it.chunks[i].lastTime().Before(t)
})
if i == len(it.chunks) {
panic("out of bounds")
}
if t.Before(it.chunks[i].firstTime()) {
// We ended up between two chunks.
return metric.Values{
it.chunks[i-1].newIterator().getValueAtTime(t)[0],
it.chunks[i].newIterator().getValueAtTime(t)[0],
}
}
// We ended up in the middle of a chunk. We might stay there for a while,
// so save it as the current chunk iterator.
it.chunkIt = it.chunks[i].newIterator()
return it.chunkIt.getValueAtTime(t)
}
// GetBoundaryValues implements SeriesIterator.
func (it *memorySeriesIterator) GetBoundaryValues(in metric.Interval) metric.Values {
it.lock()
defer it.unlock()
// Find the first relevant chunk.
i := sort.Search(len(it.chunks), func(i int) bool {
return !it.chunks[i].lastTime().Before(in.OldestInclusive)
})
values := make(metric.Values, 0, 2)
for i, c := range it.chunks[i:] {
var chunkIt chunkIterator
if c.firstTime().After(in.NewestInclusive) {
if len(values) == 1 {
// We found the first value already, but are now
// already past the last value. The value we
// want must be the last value of the previous
// chunk. So backtrack...
chunkIt = it.chunks[i-1].newIterator()
values = append(values, chunkIt.getValueAtTime(in.NewestInclusive)[0])
}
break
}
if len(values) == 0 {
chunkIt = c.newIterator()
firstValues := chunkIt.getValueAtTime(in.OldestInclusive)
switch len(firstValues) {
case 2:
values = append(values, firstValues[1])
case 1:
values = firstValues
default:
panic("unexpected return from getValueAtTime")
}
}
if c.lastTime().After(in.NewestInclusive) {
if chunkIt == nil {
chunkIt = c.newIterator()
}
values = append(values, chunkIt.getValueAtTime(in.NewestInclusive)[0])
break
}
}
if len(values) == 1 {
// We found exactly one value. In that case, add the most recent we know.
values = append(
values,
it.chunks[len(it.chunks)-1].newIterator().getValueAtTime(in.NewestInclusive)[0],
)
}
if len(values) == 2 && values[0].Equal(&values[1]) {
return values[:1]
}
return values
}
// GetRangeValues implements SeriesIterator.
func (it *memorySeriesIterator) GetRangeValues(in metric.Interval) metric.Values {
it.lock()
defer it.unlock()
// Find the first relevant chunk.
i := sort.Search(len(it.chunks), func(i int) bool {
return !it.chunks[i].lastTime().Before(in.OldestInclusive)
})
values := metric.Values{}
for _, c := range it.chunks[i:] {
if c.firstTime().After(in.NewestInclusive) {
break
}
// TODO: actually reuse an iterator between calls if we get multiple ranges
// from the same chunk.
values = append(values, c.newIterator().getRangeValues(in)...)
}
return values
}
// nopSeriesIterator implements Series Iterator. It never returns any values.
type nopSeriesIterator struct{}
// GetValueAtTime implements SeriesIterator.
func (_ nopSeriesIterator) GetValueAtTime(t clientmodel.Timestamp) metric.Values {
return metric.Values{}
}
// GetBoundaryValues implements SeriesIterator.
func (_ nopSeriesIterator) GetBoundaryValues(in metric.Interval) metric.Values {
return metric.Values{}
}
// GetRangeValues implements SeriesIterator.
func (_ nopSeriesIterator) GetRangeValues(in metric.Interval) metric.Values {
return metric.Values{}
}