mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1076 lines
26 KiB
1076 lines
26 KiB
// Copyright 2015 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package promql |
|
|
|
import ( |
|
"fmt" |
|
"math" |
|
"os" |
|
"runtime" |
|
"sort" |
|
"strconv" |
|
"strings" |
|
"time" |
|
|
|
"github.com/pkg/errors" |
|
"github.com/prometheus/common/model" |
|
|
|
"github.com/prometheus/prometheus/pkg/labels" |
|
"github.com/prometheus/prometheus/pkg/value" |
|
"github.com/prometheus/prometheus/util/strutil" |
|
) |
|
|
|
type parser struct { |
|
lex *lexer |
|
token [3]item |
|
peekCount int |
|
} |
|
|
|
// ParseErr wraps a parsing error with line and position context. |
|
// If the parsing input was a single line, line will be 0 and omitted |
|
// from the error string. |
|
type ParseErr struct { |
|
Line, Pos int |
|
Err error |
|
} |
|
|
|
func (e *ParseErr) Error() string { |
|
if e.Line == 0 { |
|
return fmt.Sprintf("parse error at char %d: %s", e.Pos, e.Err) |
|
} |
|
return fmt.Sprintf("parse error at line %d, char %d: %s", e.Line, e.Pos, e.Err) |
|
} |
|
|
|
// ParseExpr returns the expression parsed from the input. |
|
func ParseExpr(input string) (Expr, error) { |
|
p := newParser(input) |
|
|
|
expr, err := p.parseExpr() |
|
if err != nil { |
|
return nil, err |
|
} |
|
err = p.typecheck(expr) |
|
return expr, err |
|
} |
|
|
|
// ParseMetric parses the input into a metric |
|
func ParseMetric(input string) (m labels.Labels, err error) { |
|
p := newParser(input) |
|
defer p.recover(&err) |
|
|
|
m = p.metric() |
|
if p.peek().typ != ItemEOF { |
|
p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:]) |
|
} |
|
return m, nil |
|
} |
|
|
|
// ParseMetricSelector parses the provided textual metric selector into a list of |
|
// label matchers. |
|
func ParseMetricSelector(input string) (m []*labels.Matcher, err error) { |
|
p := newParser(input) |
|
defer p.recover(&err) |
|
|
|
name := "" |
|
if t := p.peek().typ; t == ItemMetricIdentifier || t == ItemIdentifier { |
|
name = p.next().val |
|
} |
|
vs := p.VectorSelector(name) |
|
if p.peek().typ != ItemEOF { |
|
p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:]) |
|
} |
|
return vs.LabelMatchers, nil |
|
} |
|
|
|
// newParser returns a new parser. |
|
func newParser(input string) *parser { |
|
p := &parser{ |
|
lex: lex(input), |
|
} |
|
return p |
|
} |
|
|
|
// parseExpr parses a single expression from the input. |
|
func (p *parser) parseExpr() (expr Expr, err error) { |
|
defer p.recover(&err) |
|
|
|
for p.peek().typ != ItemEOF { |
|
if p.peek().typ == ItemComment { |
|
continue |
|
} |
|
if expr != nil { |
|
p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:]) |
|
} |
|
expr = p.expr() |
|
} |
|
|
|
if expr == nil { |
|
p.errorf("no expression found in input") |
|
} |
|
return |
|
} |
|
|
|
// sequenceValue is an omittable value in a sequence of time series values. |
|
type sequenceValue struct { |
|
value float64 |
|
omitted bool |
|
} |
|
|
|
func (v sequenceValue) String() string { |
|
if v.omitted { |
|
return "_" |
|
} |
|
return fmt.Sprintf("%f", v.value) |
|
} |
|
|
|
// parseSeriesDesc parses the description of a time series. |
|
func parseSeriesDesc(input string) (labels.Labels, []sequenceValue, error) { |
|
p := newParser(input) |
|
p.lex.seriesDesc = true |
|
|
|
return p.parseSeriesDesc() |
|
} |
|
|
|
// parseSeriesDesc parses a description of a time series into its metric and value sequence. |
|
func (p *parser) parseSeriesDesc() (m labels.Labels, vals []sequenceValue, err error) { |
|
defer p.recover(&err) |
|
|
|
m = p.metric() |
|
|
|
const ctx = "series values" |
|
for { |
|
for p.peek().typ == ItemSpace { |
|
p.next() |
|
} |
|
if p.peek().typ == ItemEOF { |
|
break |
|
} |
|
|
|
// Extract blanks. |
|
if p.peek().typ == ItemBlank { |
|
p.next() |
|
times := uint64(1) |
|
if p.peek().typ == ItemTimes { |
|
p.next() |
|
times, err = strconv.ParseUint(p.expect(ItemNumber, ctx).val, 10, 64) |
|
if err != nil { |
|
p.errorf("invalid repetition in %s: %s", ctx, err) |
|
} |
|
} |
|
for i := uint64(0); i < times; i++ { |
|
vals = append(vals, sequenceValue{omitted: true}) |
|
} |
|
// This is to ensure that there is a space between this and the next number. |
|
// This is especially required if the next number is negative. |
|
if t := p.expectOneOf(ItemSpace, ItemEOF, ctx).typ; t == ItemEOF { |
|
break |
|
} |
|
continue |
|
} |
|
|
|
// Extract values. |
|
sign := 1.0 |
|
if t := p.peek().typ; t == ItemSUB || t == ItemADD { |
|
if p.next().typ == ItemSUB { |
|
sign = -1 |
|
} |
|
} |
|
var k float64 |
|
if t := p.peek().typ; t == ItemNumber { |
|
k = sign * p.number(p.expect(ItemNumber, ctx).val) |
|
} else if t == ItemIdentifier && p.peek().val == "stale" { |
|
p.next() |
|
k = math.Float64frombits(value.StaleNaN) |
|
} else { |
|
p.errorf("expected number or 'stale' in %s but got %s (value: %s)", ctx, t.desc(), p.peek()) |
|
} |
|
vals = append(vals, sequenceValue{ |
|
value: k, |
|
}) |
|
|
|
// If there are no offset repetitions specified, proceed with the next value. |
|
if t := p.peek(); t.typ == ItemSpace { |
|
// This ensures there is a space between every value. |
|
continue |
|
} else if t.typ == ItemEOF { |
|
break |
|
} else if t.typ != ItemADD && t.typ != ItemSUB { |
|
p.errorf("expected next value or relative expansion in %s but got %s (value: %s)", ctx, t.desc(), p.peek()) |
|
} |
|
|
|
// Expand the repeated offsets into values. |
|
sign = 1.0 |
|
if p.next().typ == ItemSUB { |
|
sign = -1.0 |
|
} |
|
offset := sign * p.number(p.expect(ItemNumber, ctx).val) |
|
p.expect(ItemTimes, ctx) |
|
|
|
times, err := strconv.ParseUint(p.expect(ItemNumber, ctx).val, 10, 64) |
|
if err != nil { |
|
p.errorf("invalid repetition in %s: %s", ctx, err) |
|
} |
|
|
|
for i := uint64(0); i < times; i++ { |
|
k += offset |
|
vals = append(vals, sequenceValue{ |
|
value: k, |
|
}) |
|
} |
|
// This is to ensure that there is a space between this expanding notation |
|
// and the next number. This is especially required if the next number |
|
// is negative. |
|
if t := p.expectOneOf(ItemSpace, ItemEOF, ctx).typ; t == ItemEOF { |
|
break |
|
} |
|
} |
|
return m, vals, nil |
|
} |
|
|
|
// typecheck checks correct typing of the parsed statements or expression. |
|
func (p *parser) typecheck(node Node) (err error) { |
|
defer p.recover(&err) |
|
|
|
p.checkType(node) |
|
return nil |
|
} |
|
|
|
// next returns the next token. |
|
func (p *parser) next() item { |
|
if p.peekCount > 0 { |
|
p.peekCount-- |
|
} else { |
|
t := p.lex.nextItem() |
|
// Skip comments. |
|
for t.typ == ItemComment { |
|
t = p.lex.nextItem() |
|
} |
|
p.token[0] = t |
|
} |
|
if p.token[p.peekCount].typ == ItemError { |
|
p.errorf("%s", p.token[p.peekCount].val) |
|
} |
|
return p.token[p.peekCount] |
|
} |
|
|
|
// peek returns but does not consume the next token. |
|
func (p *parser) peek() item { |
|
if p.peekCount > 0 { |
|
return p.token[p.peekCount-1] |
|
} |
|
p.peekCount = 1 |
|
|
|
t := p.lex.nextItem() |
|
// Skip comments. |
|
for t.typ == ItemComment { |
|
t = p.lex.nextItem() |
|
} |
|
p.token[0] = t |
|
return p.token[0] |
|
} |
|
|
|
// backup backs the input stream up one token. |
|
func (p *parser) backup() { |
|
p.peekCount++ |
|
} |
|
|
|
// errorf formats the error and terminates processing. |
|
func (p *parser) errorf(format string, args ...interface{}) { |
|
p.error(errors.Errorf(format, args...)) |
|
} |
|
|
|
// error terminates processing. |
|
func (p *parser) error(err error) { |
|
perr := &ParseErr{ |
|
Line: p.lex.lineNumber(), |
|
Pos: p.lex.linePosition(), |
|
Err: err, |
|
} |
|
if strings.Count(strings.TrimSpace(p.lex.input), "\n") == 0 { |
|
perr.Line = 0 |
|
} |
|
panic(perr) |
|
} |
|
|
|
// expect consumes the next token and guarantees it has the required type. |
|
func (p *parser) expect(exp ItemType, context string) item { |
|
token := p.next() |
|
if token.typ != exp { |
|
p.errorf("unexpected %s in %s, expected %s", token.desc(), context, exp.desc()) |
|
} |
|
return token |
|
} |
|
|
|
// expectOneOf consumes the next token and guarantees it has one of the required types. |
|
func (p *parser) expectOneOf(exp1, exp2 ItemType, context string) item { |
|
token := p.next() |
|
if token.typ != exp1 && token.typ != exp2 { |
|
p.errorf("unexpected %s in %s, expected %s or %s", token.desc(), context, exp1.desc(), exp2.desc()) |
|
} |
|
return token |
|
} |
|
|
|
var errUnexpected = errors.New("unexpected error") |
|
|
|
// recover is the handler that turns panics into returns from the top level of Parse. |
|
func (p *parser) recover(errp *error) { |
|
e := recover() |
|
if _, ok := e.(runtime.Error); ok { |
|
// Print the stack trace but do not inhibit the running application. |
|
buf := make([]byte, 64<<10) |
|
buf = buf[:runtime.Stack(buf, false)] |
|
|
|
fmt.Fprintf(os.Stderr, "parser panic: %v\n%s", e, buf) |
|
*errp = errUnexpected |
|
} else if e != nil { |
|
*errp = e.(error) |
|
} |
|
p.lex.close() |
|
} |
|
|
|
// expr parses any expression. |
|
func (p *parser) expr() Expr { |
|
// Parse the starting expression. |
|
expr := p.unaryExpr() |
|
|
|
// Loop through the operations and construct a binary operation tree based |
|
// on the operators' precedence. |
|
for { |
|
// If the next token is not an operator the expression is done. |
|
op := p.peek().typ |
|
if !op.isOperator() { |
|
// Check for subquery. |
|
if op == ItemLeftBracket { |
|
expr = p.subqueryOrRangeSelector(expr, false) |
|
if s, ok := expr.(*SubqueryExpr); ok { |
|
// Parse optional offset. |
|
if p.peek().typ == ItemOffset { |
|
offset := p.offset() |
|
s.Offset = offset |
|
} |
|
} |
|
} |
|
return expr |
|
} |
|
p.next() // Consume operator. |
|
|
|
// Parse optional operator matching options. Its validity |
|
// is checked in the type-checking stage. |
|
vecMatching := &VectorMatching{ |
|
Card: CardOneToOne, |
|
} |
|
if op.isSetOperator() { |
|
vecMatching.Card = CardManyToMany |
|
} |
|
|
|
returnBool := false |
|
// Parse bool modifier. |
|
if p.peek().typ == ItemBool { |
|
if !op.isComparisonOperator() { |
|
p.errorf("bool modifier can only be used on comparison operators") |
|
} |
|
p.next() |
|
returnBool = true |
|
} |
|
|
|
// Parse ON/IGNORING clause. |
|
if p.peek().typ == ItemOn || p.peek().typ == ItemIgnoring { |
|
if p.peek().typ == ItemOn { |
|
vecMatching.On = true |
|
} |
|
p.next() |
|
vecMatching.MatchingLabels = p.labels() |
|
|
|
// Parse grouping. |
|
if t := p.peek().typ; t == ItemGroupLeft || t == ItemGroupRight { |
|
p.next() |
|
if t == ItemGroupLeft { |
|
vecMatching.Card = CardManyToOne |
|
} else { |
|
vecMatching.Card = CardOneToMany |
|
} |
|
if p.peek().typ == ItemLeftParen { |
|
vecMatching.Include = p.labels() |
|
} |
|
} |
|
} |
|
|
|
for _, ln := range vecMatching.MatchingLabels { |
|
for _, ln2 := range vecMatching.Include { |
|
if ln == ln2 && vecMatching.On { |
|
p.errorf("label %q must not occur in ON and GROUP clause at once", ln) |
|
} |
|
} |
|
} |
|
|
|
// Parse the next operand. |
|
rhs := p.unaryExpr() |
|
|
|
// Assign the new root based on the precedence of the LHS and RHS operators. |
|
expr = p.balance(expr, op, rhs, vecMatching, returnBool) |
|
} |
|
} |
|
|
|
func (p *parser) balance(lhs Expr, op ItemType, rhs Expr, vecMatching *VectorMatching, returnBool bool) *BinaryExpr { |
|
if lhsBE, ok := lhs.(*BinaryExpr); ok { |
|
precd := lhsBE.Op.precedence() - op.precedence() |
|
if (precd < 0) || (precd == 0 && op.isRightAssociative()) { |
|
balanced := p.balance(lhsBE.RHS, op, rhs, vecMatching, returnBool) |
|
if lhsBE.Op.isComparisonOperator() && !lhsBE.ReturnBool && balanced.Type() == ValueTypeScalar && lhsBE.LHS.Type() == ValueTypeScalar { |
|
p.errorf("comparisons between scalars must use BOOL modifier") |
|
} |
|
return &BinaryExpr{ |
|
Op: lhsBE.Op, |
|
LHS: lhsBE.LHS, |
|
RHS: balanced, |
|
VectorMatching: lhsBE.VectorMatching, |
|
ReturnBool: lhsBE.ReturnBool, |
|
} |
|
} |
|
} |
|
if op.isComparisonOperator() && !returnBool && rhs.Type() == ValueTypeScalar && lhs.Type() == ValueTypeScalar { |
|
p.errorf("comparisons between scalars must use BOOL modifier") |
|
} |
|
return &BinaryExpr{ |
|
Op: op, |
|
LHS: lhs, |
|
RHS: rhs, |
|
VectorMatching: vecMatching, |
|
ReturnBool: returnBool, |
|
} |
|
} |
|
|
|
// unaryExpr parses a unary expression. |
|
// |
|
// <Vector_selector> | <Matrix_selector> | (+|-) <number_literal> | '(' <expr> ')' |
|
// |
|
func (p *parser) unaryExpr() Expr { |
|
switch t := p.peek(); t.typ { |
|
case ItemADD, ItemSUB: |
|
p.next() |
|
e := p.unaryExpr() |
|
|
|
// Simplify unary expressions for number literals. |
|
if nl, ok := e.(*NumberLiteral); ok { |
|
if t.typ == ItemSUB { |
|
nl.Val *= -1 |
|
} |
|
return nl |
|
} |
|
return &UnaryExpr{Op: t.typ, Expr: e} |
|
|
|
case ItemLeftParen: |
|
p.next() |
|
e := p.expr() |
|
p.expect(ItemRightParen, "paren expression") |
|
|
|
return &ParenExpr{Expr: e} |
|
} |
|
e := p.primaryExpr() |
|
|
|
// Expression might be followed by a range selector. |
|
if p.peek().typ == ItemLeftBracket { |
|
e = p.subqueryOrRangeSelector(e, true) |
|
} |
|
|
|
// Parse optional offset. |
|
if p.peek().typ == ItemOffset { |
|
offset := p.offset() |
|
|
|
switch s := e.(type) { |
|
case *VectorSelector: |
|
s.Offset = offset |
|
case *MatrixSelector: |
|
s.Offset = offset |
|
case *SubqueryExpr: |
|
s.Offset = offset |
|
default: |
|
p.errorf("offset modifier must be preceded by an instant or range selector, but follows a %T instead", e) |
|
} |
|
} |
|
|
|
return e |
|
} |
|
|
|
// subqueryOrRangeSelector parses a Subquery based on given Expr (or) |
|
// a Matrix (a.k.a. range) selector based on a given Vector selector. |
|
// |
|
// <Vector_selector> '[' <duration> ']' | <Vector_selector> '[' <duration> ':' [<duration>] ']' |
|
// |
|
func (p *parser) subqueryOrRangeSelector(expr Expr, checkRange bool) Expr { |
|
ctx := "subquery selector" |
|
if checkRange { |
|
ctx = "range/subquery selector" |
|
} |
|
|
|
p.next() |
|
|
|
var erange time.Duration |
|
var err error |
|
|
|
erangeStr := p.expect(ItemDuration, ctx).val |
|
erange, err = parseDuration(erangeStr) |
|
if err != nil { |
|
p.error(err) |
|
} |
|
|
|
var itm item |
|
if checkRange { |
|
itm = p.expectOneOf(ItemRightBracket, ItemColon, ctx) |
|
if itm.typ == ItemRightBracket { |
|
// Range selector. |
|
vs, ok := expr.(*VectorSelector) |
|
if !ok { |
|
p.errorf("range specification must be preceded by a metric selector, but follows a %T instead", expr) |
|
} |
|
return &MatrixSelector{ |
|
Name: vs.Name, |
|
LabelMatchers: vs.LabelMatchers, |
|
Range: erange, |
|
} |
|
} |
|
} else { |
|
itm = p.expect(ItemColon, ctx) |
|
} |
|
|
|
// Subquery. |
|
var estep time.Duration |
|
|
|
itm = p.expectOneOf(ItemRightBracket, ItemDuration, ctx) |
|
if itm.typ == ItemDuration { |
|
estepStr := itm.val |
|
estep, err = parseDuration(estepStr) |
|
if err != nil { |
|
p.error(err) |
|
} |
|
p.expect(ItemRightBracket, ctx) |
|
} |
|
|
|
return &SubqueryExpr{ |
|
Expr: expr, |
|
Range: erange, |
|
Step: estep, |
|
} |
|
} |
|
|
|
// number parses a number. |
|
func (p *parser) number(val string) float64 { |
|
n, err := strconv.ParseInt(val, 0, 64) |
|
f := float64(n) |
|
if err != nil { |
|
f, err = strconv.ParseFloat(val, 64) |
|
} |
|
if err != nil { |
|
p.errorf("error parsing number: %s", err) |
|
} |
|
return f |
|
} |
|
|
|
// primaryExpr parses a primary expression. |
|
// |
|
// <metric_name> | <function_call> | <Vector_aggregation> | <literal> |
|
// |
|
func (p *parser) primaryExpr() Expr { |
|
switch t := p.next(); { |
|
case t.typ == ItemNumber: |
|
f := p.number(t.val) |
|
return &NumberLiteral{f} |
|
|
|
case t.typ == ItemString: |
|
return &StringLiteral{p.unquoteString(t.val)} |
|
|
|
case t.typ == ItemLeftBrace: |
|
// Metric selector without metric name. |
|
p.backup() |
|
return p.VectorSelector("") |
|
|
|
case t.typ == ItemIdentifier: |
|
// Check for function call. |
|
if p.peek().typ == ItemLeftParen { |
|
return p.call(t.val) |
|
} |
|
fallthrough // Else metric selector. |
|
|
|
case t.typ == ItemMetricIdentifier: |
|
return p.VectorSelector(t.val) |
|
|
|
case t.typ.isAggregator(): |
|
p.backup() |
|
return p.aggrExpr() |
|
|
|
default: |
|
p.errorf("no valid expression found") |
|
} |
|
return nil |
|
} |
|
|
|
// labels parses a list of labelnames. |
|
// |
|
// '(' <label_name>, ... ')' |
|
// |
|
func (p *parser) labels() []string { |
|
const ctx = "grouping opts" |
|
|
|
p.expect(ItemLeftParen, ctx) |
|
|
|
labels := []string{} |
|
if p.peek().typ != ItemRightParen { |
|
for { |
|
id := p.next() |
|
if !isLabel(id.val) { |
|
p.errorf("unexpected %s in %s, expected label", id.desc(), ctx) |
|
} |
|
labels = append(labels, id.val) |
|
|
|
if p.peek().typ != ItemComma { |
|
break |
|
} |
|
p.next() |
|
} |
|
} |
|
p.expect(ItemRightParen, ctx) |
|
|
|
return labels |
|
} |
|
|
|
// aggrExpr parses an aggregation expression. |
|
// |
|
// <aggr_op> (<Vector_expr>) [by|without <labels>] |
|
// <aggr_op> [by|without <labels>] (<Vector_expr>) |
|
// |
|
func (p *parser) aggrExpr() *AggregateExpr { |
|
const ctx = "aggregation" |
|
|
|
agop := p.next() |
|
if !agop.typ.isAggregator() { |
|
p.errorf("expected aggregation operator but got %s", agop) |
|
} |
|
var grouping []string |
|
var without bool |
|
|
|
modifiersFirst := false |
|
|
|
if t := p.peek().typ; t == ItemBy || t == ItemWithout { |
|
if t == ItemWithout { |
|
without = true |
|
} |
|
p.next() |
|
grouping = p.labels() |
|
modifiersFirst = true |
|
} |
|
|
|
p.expect(ItemLeftParen, ctx) |
|
var param Expr |
|
if agop.typ.isAggregatorWithParam() { |
|
param = p.expr() |
|
p.expect(ItemComma, ctx) |
|
} |
|
e := p.expr() |
|
p.expect(ItemRightParen, ctx) |
|
|
|
if !modifiersFirst { |
|
if t := p.peek().typ; t == ItemBy || t == ItemWithout { |
|
if len(grouping) > 0 { |
|
p.errorf("aggregation must only contain one grouping clause") |
|
} |
|
if t == ItemWithout { |
|
without = true |
|
} |
|
p.next() |
|
grouping = p.labels() |
|
} |
|
} |
|
|
|
return &AggregateExpr{ |
|
Op: agop.typ, |
|
Expr: e, |
|
Param: param, |
|
Grouping: grouping, |
|
Without: without, |
|
} |
|
} |
|
|
|
// call parses a function call. |
|
// |
|
// <func_name> '(' [ <arg_expr>, ...] ')' |
|
// |
|
func (p *parser) call(name string) *Call { |
|
const ctx = "function call" |
|
|
|
fn, exist := getFunction(name) |
|
if !exist { |
|
p.errorf("unknown function with name %q", name) |
|
} |
|
|
|
p.expect(ItemLeftParen, ctx) |
|
// Might be call without args. |
|
if p.peek().typ == ItemRightParen { |
|
p.next() // Consume. |
|
return &Call{fn, nil} |
|
} |
|
|
|
var args []Expr |
|
for { |
|
e := p.expr() |
|
args = append(args, e) |
|
|
|
// Terminate if no more arguments. |
|
if p.peek().typ != ItemComma { |
|
break |
|
} |
|
p.next() |
|
} |
|
|
|
// Call must be closed. |
|
p.expect(ItemRightParen, ctx) |
|
|
|
return &Call{Func: fn, Args: args} |
|
} |
|
|
|
// labelSet parses a set of label matchers |
|
// |
|
// '{' [ <labelname> '=' <match_string>, ... ] '}' |
|
// |
|
func (p *parser) labelSet() labels.Labels { |
|
set := []labels.Label{} |
|
for _, lm := range p.labelMatchers(ItemEQL) { |
|
set = append(set, labels.Label{Name: lm.Name, Value: lm.Value}) |
|
} |
|
return labels.New(set...) |
|
} |
|
|
|
// labelMatchers parses a set of label matchers. |
|
// |
|
// '{' [ <labelname> <match_op> <match_string>, ... ] '}' |
|
// |
|
func (p *parser) labelMatchers(operators ...ItemType) []*labels.Matcher { |
|
const ctx = "label matching" |
|
|
|
matchers := []*labels.Matcher{} |
|
|
|
p.expect(ItemLeftBrace, ctx) |
|
|
|
// Check if no matchers are provided. |
|
if p.peek().typ == ItemRightBrace { |
|
p.next() |
|
return matchers |
|
} |
|
|
|
for { |
|
label := p.expect(ItemIdentifier, ctx) |
|
|
|
op := p.next().typ |
|
if !op.isOperator() { |
|
p.errorf("expected label matching operator but got %s", op) |
|
} |
|
var validOp = false |
|
for _, allowedOp := range operators { |
|
if op == allowedOp { |
|
validOp = true |
|
} |
|
} |
|
if !validOp { |
|
p.errorf("operator must be one of %q, is %q", operators, op) |
|
} |
|
|
|
val := p.unquoteString(p.expect(ItemString, ctx).val) |
|
|
|
// Map the item to the respective match type. |
|
var matchType labels.MatchType |
|
switch op { |
|
case ItemEQL: |
|
matchType = labels.MatchEqual |
|
case ItemNEQ: |
|
matchType = labels.MatchNotEqual |
|
case ItemEQLRegex: |
|
matchType = labels.MatchRegexp |
|
case ItemNEQRegex: |
|
matchType = labels.MatchNotRegexp |
|
default: |
|
p.errorf("item %q is not a metric match type", op) |
|
} |
|
|
|
m, err := labels.NewMatcher(matchType, label.val, val) |
|
if err != nil { |
|
p.error(err) |
|
} |
|
|
|
matchers = append(matchers, m) |
|
|
|
if p.peek().typ == ItemIdentifier { |
|
p.errorf("missing comma before next identifier %q", p.peek().val) |
|
} |
|
|
|
// Terminate list if last matcher. |
|
if p.peek().typ != ItemComma { |
|
break |
|
} |
|
p.next() |
|
|
|
// Allow comma after each item in a multi-line listing. |
|
if p.peek().typ == ItemRightBrace { |
|
break |
|
} |
|
} |
|
|
|
p.expect(ItemRightBrace, ctx) |
|
|
|
return matchers |
|
} |
|
|
|
// metric parses a metric. |
|
// |
|
// <label_set> |
|
// <metric_identifier> [<label_set>] |
|
// |
|
func (p *parser) metric() labels.Labels { |
|
name := "" |
|
var m labels.Labels |
|
|
|
t := p.peek().typ |
|
if t == ItemIdentifier || t == ItemMetricIdentifier { |
|
name = p.next().val |
|
t = p.peek().typ |
|
} |
|
if t != ItemLeftBrace && name == "" { |
|
p.errorf("missing metric name or metric selector") |
|
} |
|
if t == ItemLeftBrace { |
|
m = p.labelSet() |
|
} |
|
if name != "" { |
|
m = append(m, labels.Label{Name: labels.MetricName, Value: name}) |
|
sort.Sort(m) |
|
} |
|
return m |
|
} |
|
|
|
// offset parses an offset modifier. |
|
// |
|
// offset <duration> |
|
// |
|
func (p *parser) offset() time.Duration { |
|
const ctx = "offset" |
|
|
|
p.next() |
|
offi := p.expect(ItemDuration, ctx) |
|
|
|
offset, err := parseDuration(offi.val) |
|
if err != nil { |
|
p.error(err) |
|
} |
|
|
|
return offset |
|
} |
|
|
|
// VectorSelector parses a new (instant) vector selector. |
|
// |
|
// <metric_identifier> [<label_matchers>] |
|
// [<metric_identifier>] <label_matchers> |
|
// |
|
func (p *parser) VectorSelector(name string) *VectorSelector { |
|
var matchers []*labels.Matcher |
|
// Parse label matching if any. |
|
if t := p.peek(); t.typ == ItemLeftBrace { |
|
matchers = p.labelMatchers(ItemEQL, ItemNEQ, ItemEQLRegex, ItemNEQRegex) |
|
} |
|
// Metric name must not be set in the label matchers and before at the same time. |
|
if name != "" { |
|
for _, m := range matchers { |
|
if m.Name == labels.MetricName { |
|
p.errorf("metric name must not be set twice: %q or %q", name, m.Value) |
|
} |
|
} |
|
// Set name label matching. |
|
m, err := labels.NewMatcher(labels.MatchEqual, labels.MetricName, name) |
|
if err != nil { |
|
panic(err) // Must not happen with metric.Equal. |
|
} |
|
matchers = append(matchers, m) |
|
} |
|
|
|
if len(matchers) == 0 { |
|
p.errorf("vector selector must contain label matchers or metric name") |
|
} |
|
// A Vector selector must contain at least one non-empty matcher to prevent |
|
// implicit selection of all metrics (e.g. by a typo). |
|
notEmpty := false |
|
for _, lm := range matchers { |
|
if !lm.Matches("") { |
|
notEmpty = true |
|
break |
|
} |
|
} |
|
if !notEmpty { |
|
p.errorf("vector selector must contain at least one non-empty matcher") |
|
} |
|
|
|
return &VectorSelector{ |
|
Name: name, |
|
LabelMatchers: matchers, |
|
} |
|
} |
|
|
|
// expectType checks the type of the node and raises an error if it |
|
// is not of the expected type. |
|
func (p *parser) expectType(node Node, want ValueType, context string) { |
|
t := p.checkType(node) |
|
if t != want { |
|
p.errorf("expected type %s in %s, got %s", documentedType(want), context, documentedType(t)) |
|
} |
|
} |
|
|
|
// check the types of the children of each node and raise an error |
|
// if they do not form a valid node. |
|
// |
|
// Some of these checks are redundant as the parsing stage does not allow |
|
// them, but the costs are small and might reveal errors when making changes. |
|
func (p *parser) checkType(node Node) (typ ValueType) { |
|
// For expressions the type is determined by their Type function. |
|
// Lists do not have a type but are not invalid either. |
|
switch n := node.(type) { |
|
case Expressions: |
|
typ = ValueTypeNone |
|
case Expr: |
|
typ = n.Type() |
|
default: |
|
p.errorf("unknown node type: %T", node) |
|
} |
|
|
|
// Recursively check correct typing for child nodes and raise |
|
// errors in case of bad typing. |
|
switch n := node.(type) { |
|
case *EvalStmt: |
|
ty := p.checkType(n.Expr) |
|
if ty == ValueTypeNone { |
|
p.errorf("evaluation statement must have a valid expression type but got %s", documentedType(ty)) |
|
} |
|
|
|
case Expressions: |
|
for _, e := range n { |
|
ty := p.checkType(e) |
|
if ty == ValueTypeNone { |
|
p.errorf("expression must have a valid expression type but got %s", documentedType(ty)) |
|
} |
|
} |
|
case *AggregateExpr: |
|
if !n.Op.isAggregator() { |
|
p.errorf("aggregation operator expected in aggregation expression but got %q", n.Op) |
|
} |
|
p.expectType(n.Expr, ValueTypeVector, "aggregation expression") |
|
if n.Op == ItemTopK || n.Op == ItemBottomK || n.Op == ItemQuantile { |
|
p.expectType(n.Param, ValueTypeScalar, "aggregation parameter") |
|
} |
|
if n.Op == ItemCountValues { |
|
p.expectType(n.Param, ValueTypeString, "aggregation parameter") |
|
} |
|
|
|
case *BinaryExpr: |
|
lt := p.checkType(n.LHS) |
|
rt := p.checkType(n.RHS) |
|
|
|
if !n.Op.isOperator() { |
|
p.errorf("binary expression does not support operator %q", n.Op) |
|
} |
|
if (lt != ValueTypeScalar && lt != ValueTypeVector) || (rt != ValueTypeScalar && rt != ValueTypeVector) { |
|
p.errorf("binary expression must contain only scalar and instant vector types") |
|
} |
|
|
|
if (lt != ValueTypeVector || rt != ValueTypeVector) && n.VectorMatching != nil { |
|
if len(n.VectorMatching.MatchingLabels) > 0 { |
|
p.errorf("vector matching only allowed between instant vectors") |
|
} |
|
n.VectorMatching = nil |
|
} else { |
|
// Both operands are Vectors. |
|
if n.Op.isSetOperator() { |
|
if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne { |
|
p.errorf("no grouping allowed for %q operation", n.Op) |
|
} |
|
if n.VectorMatching.Card != CardManyToMany { |
|
p.errorf("set operations must always be many-to-many") |
|
} |
|
} |
|
} |
|
|
|
if (lt == ValueTypeScalar || rt == ValueTypeScalar) && n.Op.isSetOperator() { |
|
p.errorf("set operator %q not allowed in binary scalar expression", n.Op) |
|
} |
|
|
|
case *Call: |
|
nargs := len(n.Func.ArgTypes) |
|
if n.Func.Variadic == 0 { |
|
if nargs != len(n.Args) { |
|
p.errorf("expected %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args)) |
|
} |
|
} else { |
|
na := nargs - 1 |
|
if na > len(n.Args) { |
|
p.errorf("expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args)) |
|
} else if nargsmax := na + n.Func.Variadic; n.Func.Variadic > 0 && nargsmax < len(n.Args) { |
|
p.errorf("expected at most %d argument(s) in call to %q, got %d", nargsmax, n.Func.Name, len(n.Args)) |
|
} |
|
} |
|
|
|
for i, arg := range n.Args { |
|
if i >= len(n.Func.ArgTypes) { |
|
i = len(n.Func.ArgTypes) - 1 |
|
} |
|
p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name)) |
|
} |
|
|
|
case *ParenExpr: |
|
p.checkType(n.Expr) |
|
|
|
case *UnaryExpr: |
|
if n.Op != ItemADD && n.Op != ItemSUB { |
|
p.errorf("only + and - operators allowed for unary expressions") |
|
} |
|
if t := p.checkType(n.Expr); t != ValueTypeScalar && t != ValueTypeVector { |
|
p.errorf("unary expression only allowed on expressions of type scalar or instant vector, got %q", documentedType(t)) |
|
} |
|
|
|
case *SubqueryExpr: |
|
ty := p.checkType(n.Expr) |
|
if ty != ValueTypeVector { |
|
p.errorf("subquery is only allowed on instant vector, got %s in %q instead", ty, n.String()) |
|
} |
|
|
|
case *NumberLiteral, *MatrixSelector, *StringLiteral, *VectorSelector: |
|
// Nothing to do for terminals. |
|
|
|
default: |
|
p.errorf("unknown node type: %T", node) |
|
} |
|
return |
|
} |
|
|
|
func (p *parser) unquoteString(s string) string { |
|
unquoted, err := strutil.Unquote(s) |
|
if err != nil { |
|
p.errorf("error unquoting string %q: %s", s, err) |
|
} |
|
return unquoted |
|
} |
|
|
|
func parseDuration(ds string) (time.Duration, error) { |
|
dur, err := model.ParseDuration(ds) |
|
if err != nil { |
|
return 0, err |
|
} |
|
if dur == 0 { |
|
return 0, errors.New("duration must be greater than 0") |
|
} |
|
return time.Duration(dur), nil |
|
}
|
|
|