mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
6.7 KiB
217 lines
6.7 KiB
// Copyright 2013 Prometheus Team
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package format
|
|
|
|
import (
|
|
"container/list"
|
|
"fmt"
|
|
"github.com/prometheus/prometheus/model"
|
|
"github.com/prometheus/prometheus/utility/test"
|
|
"os"
|
|
"path"
|
|
"testing"
|
|
"time"
|
|
)
|
|
|
|
func testProcessor002Process(t test.Tester) {
|
|
var scenarios = []struct {
|
|
in string
|
|
baseLabels model.LabelSet
|
|
out model.Samples
|
|
err error
|
|
}{
|
|
{
|
|
in: "empty.json",
|
|
err: fmt.Errorf("EOF"),
|
|
},
|
|
{
|
|
in: "test0_0_1-0_0_2.json",
|
|
baseLabels: model.LabelSet{
|
|
model.JobLabel: "batch_exporter",
|
|
},
|
|
out: model.Samples{
|
|
model.Sample{
|
|
Metric: model.Metric{"service": "zed", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
|
|
Value: 25,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"service": "bar", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
|
|
Value: 25,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"service": "foo", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
|
|
Value: 25,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 0.0459814091918713,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 78.48563317257356,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 15.890724674774395,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 0.0459814091918713,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 78.48563317257356,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 15.890724674774395,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 0.6120456642749681,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 97.31798360385088,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 84.63044031436561,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 1.355915069887731,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 109.89202084295582,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 160.21100853053224,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 1.772733213161236,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 109.99626121011262,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 172.49828748957728,
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
for i, scenario := range scenarios {
|
|
inputChannel := make(chan Result, 1024)
|
|
|
|
defer func(c chan Result) {
|
|
close(c)
|
|
}(inputChannel)
|
|
|
|
reader, err := os.Open(path.Join("fixtures", scenario.in))
|
|
if err != nil {
|
|
t.Fatalf("%d. couldn't open scenario input file %s: %s", scenario.in, err)
|
|
}
|
|
|
|
err = Processor002.Process(reader, time.Now(), scenario.baseLabels, inputChannel)
|
|
if !test.ErrorEqual(scenario.err, err) {
|
|
t.Errorf("%d. expected err of %s, got %s", i, scenario.err, err)
|
|
continue
|
|
}
|
|
|
|
delivered := model.Samples{}
|
|
|
|
for len(inputChannel) != 0 {
|
|
result := <-inputChannel
|
|
if result.Err != nil {
|
|
t.Fatalf("%d. expected no error, got: %s", i, result.Err)
|
|
}
|
|
delivered = append(delivered, result.Samples...)
|
|
}
|
|
|
|
if len(delivered) != len(scenario.out) {
|
|
t.Errorf("%d. expected output length of %d, got %d", i, len(scenario.out), len(delivered))
|
|
|
|
continue
|
|
}
|
|
|
|
expectedElements := list.New()
|
|
for _, j := range scenario.out {
|
|
expectedElements.PushBack(j)
|
|
}
|
|
|
|
for j := 0; j < len(delivered); j++ {
|
|
actual := delivered[j]
|
|
|
|
found := false
|
|
for element := expectedElements.Front(); element != nil && found == false; element = element.Next() {
|
|
candidate := element.Value.(model.Sample)
|
|
|
|
if candidate.Value != actual.Value {
|
|
continue
|
|
}
|
|
|
|
if len(candidate.Metric) != len(actual.Metric) {
|
|
continue
|
|
}
|
|
|
|
labelsMatch := false
|
|
|
|
for key, value := range candidate.Metric {
|
|
actualValue, ok := actual.Metric[key]
|
|
if !ok {
|
|
break
|
|
}
|
|
if actualValue == value {
|
|
labelsMatch = true
|
|
break
|
|
}
|
|
}
|
|
|
|
if !labelsMatch {
|
|
continue
|
|
}
|
|
|
|
// XXX: Test time.
|
|
found = true
|
|
expectedElements.Remove(element)
|
|
}
|
|
|
|
if !found {
|
|
t.Errorf("%d.%d. expected to find %s among candidate, absent", i, j, actual)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestProcessor002Process(t *testing.T) {
|
|
testProcessor002Process(t)
|
|
}
|
|
|
|
func BenchmarkProcessor002Process(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testProcessor002Process(b)
|
|
}
|
|
}
|