mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
684 lines
19 KiB
684 lines
19 KiB
// Copyright 2013 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package ast |
|
|
|
import ( |
|
"container/heap" |
|
"fmt" |
|
"math" |
|
"sort" |
|
"strconv" |
|
"time" |
|
|
|
clientmodel "github.com/prometheus/client_golang/model" |
|
|
|
"github.com/prometheus/prometheus/storage/metric" |
|
) |
|
|
|
// Function represents a function of the expression language and is |
|
// used by function nodes. |
|
type Function struct { |
|
name string |
|
argTypes []ExprType |
|
optionalArgs int |
|
returnType ExprType |
|
callFn func(timestamp clientmodel.Timestamp, args []Node) interface{} |
|
} |
|
|
|
// CheckArgTypes returns a non-nil error if the number or types of |
|
// passed in arg nodes do not match the function's expectations. |
|
func (function *Function) CheckArgTypes(args []Node) error { |
|
if len(function.argTypes) < len(args) { |
|
return fmt.Errorf( |
|
"too many arguments to function %v(): %v expected at most, %v given", |
|
function.name, len(function.argTypes), len(args), |
|
) |
|
} |
|
if len(function.argTypes)-function.optionalArgs > len(args) { |
|
return fmt.Errorf( |
|
"too few arguments to function %v(): %v expected at least, %v given", |
|
function.name, len(function.argTypes)-function.optionalArgs, len(args), |
|
) |
|
} |
|
for idx, arg := range args { |
|
invalidType := false |
|
var expectedType string |
|
if _, ok := arg.(ScalarNode); function.argTypes[idx] == ScalarType && !ok { |
|
invalidType = true |
|
expectedType = "scalar" |
|
} |
|
if _, ok := arg.(VectorNode); function.argTypes[idx] == VectorType && !ok { |
|
invalidType = true |
|
expectedType = "vector" |
|
} |
|
if _, ok := arg.(MatrixNode); function.argTypes[idx] == MatrixType && !ok { |
|
invalidType = true |
|
expectedType = "matrix" |
|
} |
|
if _, ok := arg.(StringNode); function.argTypes[idx] == StringType && !ok { |
|
invalidType = true |
|
expectedType = "string" |
|
} |
|
|
|
if invalidType { |
|
return fmt.Errorf( |
|
"wrong type for argument %v in function %v(), expected %v", |
|
idx, function.name, expectedType, |
|
) |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
// === time() clientmodel.SampleValue === |
|
func timeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return clientmodel.SampleValue(timestamp.Unix()) |
|
} |
|
|
|
// === delta(matrix MatrixNode, isCounter=0 ScalarNode) Vector === |
|
func deltaImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
matrixNode := args[0].(MatrixNode) |
|
isCounter := len(args) >= 2 && args[1].(ScalarNode).Eval(timestamp) > 0 |
|
resultVector := Vector{} |
|
|
|
// If we treat these metrics as counters, we need to fetch all values |
|
// in the interval to find breaks in the timeseries' monotonicity. |
|
// I.e. if a counter resets, we want to ignore that reset. |
|
var matrixValue Matrix |
|
if isCounter { |
|
matrixValue = matrixNode.Eval(timestamp) |
|
} else { |
|
matrixValue = matrixNode.EvalBoundaries(timestamp) |
|
} |
|
for _, samples := range matrixValue { |
|
// No sense in trying to compute a delta without at least two points. Drop |
|
// this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
|
|
counterCorrection := clientmodel.SampleValue(0) |
|
lastValue := clientmodel.SampleValue(0) |
|
for _, sample := range samples.Values { |
|
currentValue := sample.Value |
|
if isCounter && currentValue < lastValue { |
|
counterCorrection += lastValue - currentValue |
|
} |
|
lastValue = currentValue |
|
} |
|
resultValue := lastValue - samples.Values[0].Value + counterCorrection |
|
|
|
targetInterval := args[0].(*MatrixSelector).interval |
|
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp) |
|
if sampledInterval == 0 { |
|
// Only found one sample. Cannot compute a rate from this. |
|
continue |
|
} |
|
// Correct for differences in target vs. actual delta interval. |
|
// |
|
// Above, we didn't actually calculate the delta for the specified target |
|
// interval, but for an interval between the first and last found samples |
|
// under the target interval, which will usually have less time between |
|
// them. Depending on how many samples are found under a target interval, |
|
// the delta results are distorted and temporal aliasing occurs (ugly |
|
// bumps). This effect is corrected for below. |
|
intervalCorrection := clientmodel.SampleValue(targetInterval) / clientmodel.SampleValue(sampledInterval) |
|
resultValue *= intervalCorrection |
|
|
|
resultSample := &Sample{ |
|
Metric: samples.Metric, |
|
Value: resultValue, |
|
Timestamp: timestamp, |
|
} |
|
resultSample.Metric.Delete(clientmodel.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === rate(node MatrixNode) Vector === |
|
func rateImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
args = append(args, &ScalarLiteral{value: 1}) |
|
vector := deltaImpl(timestamp, args).(Vector) |
|
|
|
// TODO: could be other type of MatrixNode in the future (right now, only |
|
// MatrixSelector exists). Find a better way of getting the duration of a |
|
// matrix, such as looking at the samples themselves. |
|
interval := args[0].(*MatrixSelector).interval |
|
for i := range vector { |
|
vector[i].Value /= clientmodel.SampleValue(interval / time.Second) |
|
} |
|
return vector |
|
} |
|
|
|
type vectorByValueHeap Vector |
|
|
|
func (s vectorByValueHeap) Len() int { |
|
return len(s) |
|
} |
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool { |
|
return s[i].Value < s[j].Value |
|
} |
|
|
|
func (s vectorByValueHeap) Swap(i, j int) { |
|
s[i], s[j] = s[j], s[i] |
|
} |
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) { |
|
*s = append(*s, x.(*Sample)) |
|
} |
|
|
|
func (s *vectorByValueHeap) Pop() interface{} { |
|
old := *s |
|
n := len(old) |
|
el := old[n-1] |
|
*s = old[0 : n-1] |
|
return el |
|
} |
|
|
|
type reverseHeap struct { |
|
heap.Interface |
|
} |
|
|
|
func (s reverseHeap) Less(i, j int) bool { |
|
return s.Interface.Less(j, i) |
|
} |
|
|
|
// === sort(node VectorNode) Vector === |
|
func sortImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
byValueSorter := vectorByValueHeap(args[0].(VectorNode).Eval(timestamp)) |
|
sort.Sort(byValueSorter) |
|
return Vector(byValueSorter) |
|
} |
|
|
|
// === sortDesc(node VectorNode) Vector === |
|
func sortDescImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
byValueSorter := vectorByValueHeap(args[0].(VectorNode).Eval(timestamp)) |
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
return Vector(byValueSorter) |
|
} |
|
|
|
// === topk(k ScalarNode, node VectorNode) Vector === |
|
func topkImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
k := int(args[0].(ScalarNode).Eval(timestamp)) |
|
if k < 1 { |
|
return Vector{} |
|
} |
|
|
|
topk := make(vectorByValueHeap, 0, k) |
|
vector := args[1].(VectorNode).Eval(timestamp) |
|
|
|
for _, el := range vector { |
|
if len(topk) < k || topk[0].Value < el.Value { |
|
if len(topk) == k { |
|
heap.Pop(&topk) |
|
} |
|
heap.Push(&topk, el) |
|
} |
|
} |
|
sort.Sort(sort.Reverse(topk)) |
|
return Vector(topk) |
|
} |
|
|
|
// === bottomk(k ScalarNode, node VectorNode) Vector === |
|
func bottomkImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
k := int(args[0].(ScalarNode).Eval(timestamp)) |
|
if k < 1 { |
|
return Vector{} |
|
} |
|
|
|
bottomk := make(vectorByValueHeap, 0, k) |
|
bkHeap := reverseHeap{Interface: &bottomk} |
|
vector := args[1].(VectorNode).Eval(timestamp) |
|
|
|
for _, el := range vector { |
|
if len(bottomk) < k || bottomk[0].Value > el.Value { |
|
if len(bottomk) == k { |
|
heap.Pop(&bkHeap) |
|
} |
|
heap.Push(&bkHeap, el) |
|
} |
|
} |
|
sort.Sort(bottomk) |
|
return Vector(bottomk) |
|
} |
|
|
|
// === drop_common_labels(node VectorNode) Vector === |
|
func dropCommonLabelsImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
vector := args[0].(VectorNode).Eval(timestamp) |
|
if len(vector) < 1 { |
|
return Vector{} |
|
} |
|
common := clientmodel.LabelSet{} |
|
for k, v := range vector[0].Metric.Metric { |
|
// TODO(julius): Should we also drop common metric names? |
|
if k == clientmodel.MetricNameLabel { |
|
continue |
|
} |
|
common[k] = v |
|
} |
|
|
|
for _, el := range vector[1:] { |
|
for k, v := range common { |
|
if el.Metric.Metric[k] != v { |
|
// Deletion of map entries while iterating over them is safe. |
|
// From http://golang.org/ref/spec#For_statements: |
|
// "If map entries that have not yet been reached are deleted during |
|
// iteration, the corresponding iteration values will not be produced." |
|
delete(common, k) |
|
} |
|
} |
|
} |
|
|
|
for _, el := range vector { |
|
for k := range el.Metric.Metric { |
|
if _, ok := common[k]; ok { |
|
el.Metric.Delete(k) |
|
} |
|
} |
|
} |
|
return vector |
|
} |
|
|
|
// === round(vector VectorNode, toNearest=1 Scalar) Vector === |
|
func roundImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
// round returns a number rounded to toNearest. |
|
// Ties are solved by rounding up. |
|
toNearest := float64(1) |
|
if len(args) >= 2 { |
|
toNearest = float64(args[1].(ScalarNode).Eval(timestamp)) |
|
} |
|
// Invert as it seems to cause fewer floating point accuracy issues. |
|
toNearestInverse := 1.0 / toNearest |
|
|
|
n := args[0].(VectorNode) |
|
vector := n.Eval(timestamp) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse) |
|
} |
|
return vector |
|
} |
|
|
|
// === scalar(node VectorNode) Scalar === |
|
func scalarImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
v := args[0].(VectorNode).Eval(timestamp) |
|
if len(v) != 1 { |
|
return clientmodel.SampleValue(math.NaN()) |
|
} |
|
return clientmodel.SampleValue(v[0].Value) |
|
} |
|
|
|
// === count_scalar(vector VectorNode) model.SampleValue === |
|
func countScalarImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return clientmodel.SampleValue(len(args[0].(VectorNode).Eval(timestamp))) |
|
} |
|
|
|
func aggrOverTime(timestamp clientmodel.Timestamp, args []Node, aggrFn func(metric.Values) clientmodel.SampleValue) interface{} { |
|
n := args[0].(MatrixNode) |
|
matrixVal := n.Eval(timestamp) |
|
resultVector := Vector{} |
|
|
|
for _, el := range matrixVal { |
|
if len(el.Values) == 0 { |
|
continue |
|
} |
|
|
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
resultVector = append(resultVector, &Sample{ |
|
Metric: el.Metric, |
|
Value: aggrFn(el.Values), |
|
Timestamp: timestamp, |
|
}) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === avg_over_time(matrix MatrixNode) Vector === |
|
func avgOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue { |
|
var sum clientmodel.SampleValue |
|
for _, v := range values { |
|
sum += v.Value |
|
} |
|
return sum / clientmodel.SampleValue(len(values)) |
|
}) |
|
} |
|
|
|
// === count_over_time(matrix MatrixNode) Vector === |
|
func countOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue { |
|
return clientmodel.SampleValue(len(values)) |
|
}) |
|
} |
|
|
|
// === floor(vector VectorNode) Vector === |
|
func floorImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
n := args[0].(VectorNode) |
|
vector := n.Eval(timestamp) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === max_over_time(matrix MatrixNode) Vector === |
|
func maxOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue { |
|
max := math.Inf(-1) |
|
for _, v := range values { |
|
max = math.Max(max, float64(v.Value)) |
|
} |
|
return clientmodel.SampleValue(max) |
|
}) |
|
} |
|
|
|
// === min_over_time(matrix MatrixNode) Vector === |
|
func minOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue { |
|
min := math.Inf(1) |
|
for _, v := range values { |
|
min = math.Min(min, float64(v.Value)) |
|
} |
|
return clientmodel.SampleValue(min) |
|
}) |
|
} |
|
|
|
// === sum_over_time(matrix MatrixNode) Vector === |
|
func sumOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue { |
|
var sum clientmodel.SampleValue |
|
for _, v := range values { |
|
sum += v.Value |
|
} |
|
return sum |
|
}) |
|
} |
|
|
|
// === abs(vector VectorNode) Vector === |
|
func absImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
n := args[0].(VectorNode) |
|
vector := n.Eval(timestamp) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === absent(vector VectorNode) Vector === |
|
func absentImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
n := args[0].(VectorNode) |
|
if len(n.Eval(timestamp)) > 0 { |
|
return Vector{} |
|
} |
|
m := clientmodel.Metric{} |
|
if vs, ok := n.(*VectorSelector); ok { |
|
for _, matcher := range vs.labelMatchers { |
|
if matcher.Type == metric.Equal && matcher.Name != clientmodel.MetricNameLabel { |
|
m[matcher.Name] = matcher.Value |
|
} |
|
} |
|
} |
|
return Vector{ |
|
&Sample{ |
|
Metric: clientmodel.COWMetric{ |
|
Metric: m, |
|
Copied: true, |
|
}, |
|
Value: 1, |
|
Timestamp: timestamp, |
|
}, |
|
} |
|
} |
|
|
|
// === ceil(vector VectorNode) Vector === |
|
func ceilImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
n := args[0].(VectorNode) |
|
vector := n.Eval(timestamp) |
|
for _, el := range vector { |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
el.Value = clientmodel.SampleValue(math.Ceil(float64(el.Value))) |
|
} |
|
return vector |
|
} |
|
|
|
// === deriv(node MatrixNode) Vector === |
|
func derivImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
matrixNode := args[0].(MatrixNode) |
|
resultVector := Vector{} |
|
|
|
matrixValue := matrixNode.Eval(timestamp) |
|
for _, samples := range matrixValue { |
|
// No sense in trying to compute a derivative without at least two points. |
|
// Drop this vector element. |
|
if len(samples.Values) < 2 { |
|
continue |
|
} |
|
|
|
// Least squares. |
|
n := clientmodel.SampleValue(0) |
|
sumY := clientmodel.SampleValue(0) |
|
sumX := clientmodel.SampleValue(0) |
|
sumXY := clientmodel.SampleValue(0) |
|
sumX2 := clientmodel.SampleValue(0) |
|
for _, sample := range samples.Values { |
|
x := clientmodel.SampleValue(sample.Timestamp.UnixNano() / 1e9) |
|
n += 1.0 |
|
sumY += sample.Value |
|
sumX += x |
|
sumXY += x * sample.Value |
|
sumX2 += x * x |
|
} |
|
numerator := sumXY - sumX*sumY/n |
|
denominator := sumX2 - (sumX*sumX)/n |
|
|
|
resultValue := numerator / denominator |
|
|
|
resultSample := &Sample{ |
|
Metric: samples.Metric, |
|
Value: resultValue, |
|
Timestamp: timestamp, |
|
} |
|
resultSample.Metric.Delete(clientmodel.MetricNameLabel) |
|
resultVector = append(resultVector, resultSample) |
|
} |
|
return resultVector |
|
} |
|
|
|
// === histogram_quantile(k ScalarNode, vector VectorNode) Vector === |
|
func histogramQuantileImpl(timestamp clientmodel.Timestamp, args []Node) interface{} { |
|
q := args[0].(ScalarNode).Eval(timestamp) |
|
inVec := args[1].(VectorNode).Eval(timestamp) |
|
outVec := Vector{} |
|
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} |
|
for _, el := range inVec { |
|
upperBound, err := strconv.ParseFloat( |
|
string(el.Metric.Metric[clientmodel.BucketLabel]), 64, |
|
) |
|
if err != nil { |
|
// Oops, no bucket label or malformed label value. Skip. |
|
// TODO(beorn7): Issue a warning somehow. |
|
continue |
|
} |
|
signature := clientmodel.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) |
|
mb, ok := signatureToMetricWithBuckets[signature] |
|
if !ok { |
|
el.Metric.Delete(clientmodel.BucketLabel) |
|
el.Metric.Delete(clientmodel.MetricNameLabel) |
|
mb = &metricWithBuckets{el.Metric, nil} |
|
signatureToMetricWithBuckets[signature] = mb |
|
} |
|
mb.buckets = append(mb.buckets, bucket{upperBound, el.Value}) |
|
} |
|
|
|
for _, mb := range signatureToMetricWithBuckets { |
|
outVec = append(outVec, &Sample{ |
|
Metric: mb.metric, |
|
Value: clientmodel.SampleValue(quantile(q, mb.buckets)), |
|
Timestamp: timestamp, |
|
}) |
|
} |
|
|
|
return outVec |
|
} |
|
|
|
var functions = map[string]*Function{ |
|
"abs": { |
|
name: "abs", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: absImpl, |
|
}, |
|
"absent": { |
|
name: "absent", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: absentImpl, |
|
}, |
|
"avg_over_time": { |
|
name: "avg_over_time", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: avgOverTimeImpl, |
|
}, |
|
"bottomk": { |
|
name: "bottomk", |
|
argTypes: []ExprType{ScalarType, VectorType}, |
|
returnType: VectorType, |
|
callFn: bottomkImpl, |
|
}, |
|
"ceil": { |
|
name: "ceil", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: ceilImpl, |
|
}, |
|
"count_over_time": { |
|
name: "count_over_time", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: countOverTimeImpl, |
|
}, |
|
"count_scalar": { |
|
name: "count_scalar", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: ScalarType, |
|
callFn: countScalarImpl, |
|
}, |
|
"delta": { |
|
name: "delta", |
|
argTypes: []ExprType{MatrixType, ScalarType}, |
|
optionalArgs: 1, // The 2nd argument is deprecated. |
|
returnType: VectorType, |
|
callFn: deltaImpl, |
|
}, |
|
"deriv": { |
|
name: "deriv", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: derivImpl, |
|
}, |
|
"drop_common_labels": { |
|
name: "drop_common_labels", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: dropCommonLabelsImpl, |
|
}, |
|
"floor": { |
|
name: "floor", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: floorImpl, |
|
}, |
|
"histogram_quantile": { |
|
name: "histogram_quantile", |
|
argTypes: []ExprType{ScalarType, VectorType}, |
|
returnType: VectorType, |
|
callFn: histogramQuantileImpl, |
|
}, |
|
"max_over_time": { |
|
name: "max_over_time", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: maxOverTimeImpl, |
|
}, |
|
"min_over_time": { |
|
name: "min_over_time", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: minOverTimeImpl, |
|
}, |
|
"rate": { |
|
name: "rate", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: rateImpl, |
|
}, |
|
"round": { |
|
name: "round", |
|
argTypes: []ExprType{VectorType, ScalarType}, |
|
optionalArgs: 1, |
|
returnType: VectorType, |
|
callFn: roundImpl, |
|
}, |
|
"scalar": { |
|
name: "scalar", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: ScalarType, |
|
callFn: scalarImpl, |
|
}, |
|
"sort": { |
|
name: "sort", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: sortImpl, |
|
}, |
|
"sort_desc": { |
|
name: "sort_desc", |
|
argTypes: []ExprType{VectorType}, |
|
returnType: VectorType, |
|
callFn: sortDescImpl, |
|
}, |
|
"sum_over_time": { |
|
name: "sum_over_time", |
|
argTypes: []ExprType{MatrixType}, |
|
returnType: VectorType, |
|
callFn: sumOverTimeImpl, |
|
}, |
|
"time": { |
|
name: "time", |
|
argTypes: []ExprType{}, |
|
returnType: ScalarType, |
|
callFn: timeImpl, |
|
}, |
|
"topk": { |
|
name: "topk", |
|
argTypes: []ExprType{ScalarType, VectorType}, |
|
returnType: VectorType, |
|
callFn: topkImpl, |
|
}, |
|
} |
|
|
|
// GetFunction returns a predefined Function object for the given |
|
// name. |
|
func GetFunction(name string) (*Function, error) { |
|
function, ok := functions[name] |
|
if !ok { |
|
return nil, fmt.Errorf("couldn't find function %v()", name) |
|
} |
|
return function, nil |
|
}
|
|
|