mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1369 lines
35 KiB
1369 lines
35 KiB
// Copyright 2015 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package promql
|
|
|
|
import (
|
|
"math"
|
|
"regexp"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/prometheus/common/model"
|
|
"github.com/prometheus/prometheus/pkg/labels"
|
|
)
|
|
|
|
// Function represents a function of the expression language and is
|
|
// used by function nodes.
|
|
type Function struct {
|
|
Name string
|
|
ArgTypes []ValueType
|
|
Variadic int
|
|
ReturnType ValueType
|
|
Call func(ev *evaluator, args Expressions) Value
|
|
}
|
|
|
|
// === time() float64 ===
|
|
func funcTime(ev *evaluator, args Expressions) Value {
|
|
return Scalar{
|
|
V: float64(ev.Timestamp / 1000),
|
|
T: ev.Timestamp,
|
|
}
|
|
}
|
|
|
|
// extrapolatedRate is a utility function for rate/increase/delta.
|
|
// It calculates the rate (allowing for counter resets if isCounter is true),
|
|
// extrapolates if the first/last sample is close to the boundary, and returns
|
|
// the result as either per-second (if isRate is true) or overall.
|
|
func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) Value {
|
|
ms := arg.(*MatrixSelector)
|
|
|
|
var (
|
|
matrix = ev.evalMatrix(ms)
|
|
rangeStart = ev.Timestamp - durationMilliseconds(ms.Range+ms.Offset)
|
|
rangeEnd = ev.Timestamp - durationMilliseconds(ms.Offset)
|
|
resultVector = make(Vector, 0, len(matrix))
|
|
)
|
|
|
|
for _, samples := range matrix {
|
|
// No sense in trying to compute a rate without at least two points. Drop
|
|
// this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
var (
|
|
counterCorrection float64
|
|
lastValue float64
|
|
)
|
|
for _, sample := range samples.Points {
|
|
if isCounter && sample.V < lastValue {
|
|
counterCorrection += lastValue
|
|
}
|
|
lastValue = sample.V
|
|
}
|
|
resultValue := lastValue - samples.Points[0].V + counterCorrection
|
|
|
|
// Duration between first/last samples and boundary of range.
|
|
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
|
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
|
|
|
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
|
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
|
|
|
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
|
// Counters cannot be negative. If we have any slope at
|
|
// all (i.e. resultValue went up), we can extrapolate
|
|
// the zero point of the counter. If the duration to the
|
|
// zero point is shorter than the durationToStart, we
|
|
// take the zero point as the start of the series,
|
|
// thereby avoiding extrapolation to negative counter
|
|
// values.
|
|
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
|
if durationToZero < durationToStart {
|
|
durationToStart = durationToZero
|
|
}
|
|
}
|
|
|
|
// If the first/last samples are close to the boundaries of the range,
|
|
// extrapolate the result. This is as we expect that another sample
|
|
// will exist given the spacing between samples we've seen thus far,
|
|
// with an allowance for noise.
|
|
extrapolationThreshold := averageDurationBetweenSamples * 1.1
|
|
extrapolateToInterval := sampledInterval
|
|
|
|
if durationToStart < extrapolationThreshold {
|
|
extrapolateToInterval += durationToStart
|
|
} else {
|
|
extrapolateToInterval += averageDurationBetweenSamples / 2
|
|
}
|
|
if durationToEnd < extrapolationThreshold {
|
|
extrapolateToInterval += durationToEnd
|
|
} else {
|
|
extrapolateToInterval += averageDurationBetweenSamples / 2
|
|
}
|
|
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
|
|
if isRate {
|
|
resultValue = resultValue / ms.Range.Seconds()
|
|
}
|
|
|
|
resultVector = append(resultVector, Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: resultValue, T: ev.Timestamp},
|
|
})
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// === delta(Matrix ValueTypeMatrix) Vector ===
|
|
func funcDelta(ev *evaluator, args Expressions) Value {
|
|
return extrapolatedRate(ev, args[0], false, false)
|
|
}
|
|
|
|
// === rate(node ValueTypeMatrix) Vector ===
|
|
func funcRate(ev *evaluator, args Expressions) Value {
|
|
return extrapolatedRate(ev, args[0], true, true)
|
|
}
|
|
|
|
// === increase(node ValueTypeMatrix) Vector ===
|
|
func funcIncrease(ev *evaluator, args Expressions) Value {
|
|
return extrapolatedRate(ev, args[0], true, false)
|
|
}
|
|
|
|
// === irate(node ValueTypeMatrix) Vector ===
|
|
func funcIrate(ev *evaluator, args Expressions) Value {
|
|
return instantValue(ev, args[0], true)
|
|
}
|
|
|
|
// === idelta(node model.ValMatric) Vector ===
|
|
func funcIdelta(ev *evaluator, args Expressions) Value {
|
|
return instantValue(ev, args[0], false)
|
|
}
|
|
|
|
func instantValue(ev *evaluator, arg Expr, isRate bool) Value {
|
|
resultVector := Vector{}
|
|
for _, samples := range ev.evalMatrix(arg) {
|
|
// No sense in trying to compute a rate without at least two points. Drop
|
|
// this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
|
|
lastSample := samples.Points[len(samples.Points)-1]
|
|
previousSample := samples.Points[len(samples.Points)-2]
|
|
|
|
var resultValue float64
|
|
if isRate && lastSample.V < previousSample.V {
|
|
// Counter reset.
|
|
resultValue = lastSample.V
|
|
} else {
|
|
resultValue = lastSample.V - previousSample.V
|
|
}
|
|
|
|
sampledInterval := lastSample.T - previousSample.T
|
|
if sampledInterval == 0 {
|
|
// Avoid dividing by 0.float64
|
|
}
|
|
|
|
if isRate {
|
|
// Convert to per-second.
|
|
resultValue /= float64(sampledInterval) / 1000
|
|
}
|
|
|
|
resultVector = append(resultVector, Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: resultValue, T: ev.Timestamp},
|
|
})
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// Calculate the trend value at the given index i in raw data d.
|
|
// This is somewhat analogous to the slope of the trend at the given index.
|
|
// The argument "s" is the set of computed smoothed values.
|
|
// The argument "b" is the set of computed trend factors.
|
|
// The argument "d" is the set of raw input values.
|
|
func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 {
|
|
if i == 0 {
|
|
return b[0]
|
|
}
|
|
|
|
x := tf * (s[i] - s[i-1])
|
|
y := (1 - tf) * b[i-1]
|
|
|
|
// Cache the computed value.
|
|
b[i] = x + y
|
|
|
|
return b[i]
|
|
}
|
|
|
|
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
|
|
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current
|
|
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects
|
|
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
|
|
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
|
|
func funcHoltWinters(ev *evaluator, args Expressions) Value {
|
|
mat := ev.evalMatrix(args[0])
|
|
|
|
// The smoothing factor argument.
|
|
sf := ev.evalFloat(args[1])
|
|
|
|
// The trend factor argument.
|
|
tf := ev.evalFloat(args[2])
|
|
|
|
// Sanity check the input.
|
|
if sf <= 0 || sf >= 1 {
|
|
ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 goT: %f", sf)
|
|
}
|
|
if tf <= 0 || tf >= 1 {
|
|
ev.errorf("invalid trend factor. Expected: 0 < tf < 1 goT: %f", sf)
|
|
}
|
|
|
|
// Make an output Vector large enough to hold the entire result.
|
|
resultVector := make(Vector, 0, len(mat))
|
|
|
|
// Create scratch values.
|
|
var s, b, d []float64
|
|
|
|
var l int
|
|
for _, samples := range mat {
|
|
l = len(samples.Points)
|
|
|
|
// Can't do the smoothing operation with less than two points.
|
|
if l < 2 {
|
|
continue
|
|
}
|
|
|
|
// Resize scratch values.
|
|
if l != len(s) {
|
|
s = make([]float64, l)
|
|
b = make([]float64, l)
|
|
d = make([]float64, l)
|
|
}
|
|
|
|
// Fill in the d values with the raw values from the input.
|
|
for i, v := range samples.Points {
|
|
d[i] = v.V
|
|
}
|
|
|
|
// Set initial values.
|
|
s[0] = d[0]
|
|
b[0] = d[1] - d[0]
|
|
|
|
// Run the smoothing operation.
|
|
var x, y float64
|
|
for i := 1; i < len(d); i++ {
|
|
|
|
// Scale the raw value against the smoothing factor.
|
|
x = sf * d[i]
|
|
|
|
// Scale the last smoothed value with the trend at this point.
|
|
y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d))
|
|
|
|
s[i] = x + y
|
|
}
|
|
|
|
resultVector = append(resultVector, Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: s[len(s)-1], T: ev.Timestamp}, // The last value in the Vector is the smoothed result.
|
|
})
|
|
}
|
|
|
|
return resultVector
|
|
}
|
|
|
|
// === sort(node ValueTypeVector) Vector ===
|
|
func funcSort(ev *evaluator, args Expressions) Value {
|
|
// NaN should sort to the bottom, so take descending sort with NaN first and
|
|
// reverse it.
|
|
byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0]))
|
|
sort.Sort(sort.Reverse(byValueSorter))
|
|
return Vector(byValueSorter)
|
|
}
|
|
|
|
// === sortDesc(node ValueTypeVector) Vector ===
|
|
func funcSortDesc(ev *evaluator, args Expressions) Value {
|
|
// NaN should sort to the bottom, so take ascending sort with NaN first and
|
|
// reverse it.
|
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
|
|
sort.Sort(sort.Reverse(byValueSorter))
|
|
return Vector(byValueSorter)
|
|
}
|
|
|
|
// === clamp_max(Vector ValueTypeVector, max Scalar) Vector ===
|
|
func funcClampMax(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
max := ev.evalFloat(args[1])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Min(max, float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === clamp_min(Vector ValueTypeVector, min Scalar) Vector ===
|
|
func funcClampMin(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
min := ev.evalFloat(args[1])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Max(min, float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === drop_common_labels(node ValueTypeVector) Vector ===
|
|
func funcDropCommonLabels(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
if len(vec) < 1 {
|
|
return Vector{}
|
|
}
|
|
common := map[string]string{}
|
|
|
|
for _, l := range vec[0].Metric {
|
|
// TODO(julius): Should we also drop common metric names?
|
|
if l.Name == labels.MetricName {
|
|
continue
|
|
}
|
|
common[l.Name] = l.Value
|
|
}
|
|
|
|
for _, el := range vec[1:] {
|
|
for k, v := range common {
|
|
for _, l := range el.Metric {
|
|
if l.Name == k && l.Value != v {
|
|
// Deletion of map entries while iterating over them is safe.
|
|
// From http://golang.org/ref/spec#For_statements:
|
|
// "If map entries that have not yet been reached are deleted during
|
|
// iteration, the corresponding iteration values will not be produced."
|
|
delete(common, k)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cnames := []string{}
|
|
for n := range common {
|
|
cnames = append(cnames, n)
|
|
}
|
|
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
el.Metric = labels.NewBuilder(el.Metric).Del(cnames...).Labels()
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector ===
|
|
func funcRound(ev *evaluator, args Expressions) Value {
|
|
// round returns a number rounded to toNearest.
|
|
// Ties are solved by rounding up.
|
|
toNearest := float64(1)
|
|
if len(args) >= 2 {
|
|
toNearest = ev.evalFloat(args[1])
|
|
}
|
|
// Invert as it seems to cause fewer floating point accuracy issues.
|
|
toNearestInverse := 1.0 / toNearest
|
|
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Floor(float64(el.V)*toNearestInverse+0.5) / toNearestInverse
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === Scalar(node ValueTypeVector) Scalar ===
|
|
func funcScalar(ev *evaluator, args Expressions) Value {
|
|
v := ev.evalVector(args[0])
|
|
if len(v) != 1 {
|
|
return Scalar{
|
|
V: math.NaN(),
|
|
T: ev.Timestamp,
|
|
}
|
|
}
|
|
return Scalar{
|
|
V: v[0].V,
|
|
T: ev.Timestamp,
|
|
}
|
|
}
|
|
|
|
// === count_scalar(Vector ValueTypeVector) float64 ===
|
|
func funcCountScalar(ev *evaluator, args Expressions) Value {
|
|
return Scalar{
|
|
V: float64(len(ev.evalVector(args[0]))),
|
|
T: ev.Timestamp,
|
|
}
|
|
}
|
|
|
|
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]Point) float64) Value {
|
|
mat := ev.evalMatrix(args[0])
|
|
resultVector := Vector{}
|
|
|
|
for _, el := range mat {
|
|
if len(el.Points) == 0 {
|
|
continue
|
|
}
|
|
|
|
resultVector = append(resultVector, Sample{
|
|
Metric: dropMetricName(el.Metric),
|
|
Point: Point{V: aggrFn(el.Points), T: ev.Timestamp},
|
|
})
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcAvgOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
var sum float64
|
|
for _, v := range values {
|
|
sum += v.V
|
|
}
|
|
return sum / float64(len(values))
|
|
})
|
|
}
|
|
|
|
// === count_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcCountOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
return float64(len(values))
|
|
})
|
|
}
|
|
|
|
// === floor(Vector ValueTypeVector) Vector ===
|
|
func funcFloor(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Floor(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === max_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcMaxOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
max := math.Inf(-1)
|
|
for _, v := range values {
|
|
max = math.Max(max, float64(v.V))
|
|
}
|
|
return max
|
|
})
|
|
}
|
|
|
|
// === min_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcMinOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
min := math.Inf(1)
|
|
for _, v := range values {
|
|
min = math.Min(min, float64(v.V))
|
|
}
|
|
return min
|
|
})
|
|
}
|
|
|
|
// === sum_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcSumOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
var sum float64
|
|
for _, v := range values {
|
|
sum += v.V
|
|
}
|
|
return sum
|
|
})
|
|
}
|
|
|
|
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcQuantileOverTime(ev *evaluator, args Expressions) Value {
|
|
q := ev.evalFloat(args[0])
|
|
mat := ev.evalMatrix(args[1])
|
|
resultVector := Vector{}
|
|
|
|
for _, el := range mat {
|
|
if len(el.Points) == 0 {
|
|
continue
|
|
}
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
values := make(vectorByValueHeap, 0, len(el.Points))
|
|
for _, v := range el.Points {
|
|
values = append(values, Sample{Point: Point{V: v.V}})
|
|
}
|
|
resultVector = append(resultVector, Sample{
|
|
Metric: el.Metric,
|
|
Point: Point{V: quantile(q, values), T: ev.Timestamp},
|
|
})
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcStddevOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
var sum, squaredSum, count float64
|
|
for _, v := range values {
|
|
sum += v.V
|
|
squaredSum += v.V * v.V
|
|
count++
|
|
}
|
|
avg := sum / count
|
|
return math.Sqrt(float64(squaredSum/count - avg*avg))
|
|
})
|
|
}
|
|
|
|
// === stdvar_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcStdvarOverTime(ev *evaluator, args Expressions) Value {
|
|
return aggrOverTime(ev, args, func(values []Point) float64 {
|
|
var sum, squaredSum, count float64
|
|
for _, v := range values {
|
|
sum += v.V
|
|
squaredSum += v.V * v.V
|
|
count++
|
|
}
|
|
avg := sum / count
|
|
return squaredSum/count - avg*avg
|
|
})
|
|
}
|
|
|
|
// === abs(Vector ValueTypeVector) Vector ===
|
|
func funcAbs(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Abs(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === absent(Vector ValueTypeVector) Vector ===
|
|
func funcAbsent(ev *evaluator, args Expressions) Value {
|
|
if len(ev.evalVector(args[0])) > 0 {
|
|
return Vector{}
|
|
}
|
|
m := []labels.Label{}
|
|
|
|
if vs, ok := args[0].(*VectorSelector); ok {
|
|
for _, ma := range vs.LabelMatchers {
|
|
if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName {
|
|
m = append(m, labels.Label{Name: ma.Name, Value: ma.Value})
|
|
}
|
|
}
|
|
}
|
|
return Vector{
|
|
Sample{
|
|
Metric: labels.New(m...),
|
|
Point: Point{V: 1, T: ev.Timestamp},
|
|
},
|
|
}
|
|
}
|
|
|
|
// === ceil(Vector ValueTypeVector) Vector ===
|
|
func funcCeil(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Ceil(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === exp(Vector ValueTypeVector) Vector ===
|
|
func funcExp(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Exp(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === sqrt(Vector VectorNode) Vector ===
|
|
func funcSqrt(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Sqrt(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === ln(Vector ValueTypeVector) Vector ===
|
|
func funcLn(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Log(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === log2(Vector ValueTypeVector) Vector ===
|
|
func funcLog2(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Log2(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === log10(Vector ValueTypeVector) Vector ===
|
|
func funcLog10(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = math.Log10(float64(el.V))
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// === timestamp(Vector ValueTypeVector) Vector ===
|
|
func funcTimestamp(ev *evaluator, args Expressions) Value {
|
|
vec := ev.evalVector(args[0])
|
|
for i := range vec {
|
|
el := &vec[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
el.V = float64(el.T) / 1000.0
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// linearRegression performs a least-square linear regression analysis on the
|
|
// provided SamplePairs. It returns the slope, and the intercept value at the
|
|
// provided time.
|
|
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
|
|
var (
|
|
n float64
|
|
sumX, sumY float64
|
|
sumXY, sumX2 float64
|
|
)
|
|
for _, sample := range samples {
|
|
x := float64(sample.T-interceptTime) / 1e3
|
|
n += 1.0
|
|
sumY += sample.V
|
|
sumX += x
|
|
sumXY += x * sample.V
|
|
sumX2 += x * x
|
|
}
|
|
covXY := sumXY - sumX*sumY/n
|
|
varX := sumX2 - sumX*sumX/n
|
|
|
|
slope = covXY / varX
|
|
intercept = sumY/n - slope*sumX/n
|
|
return slope, intercept
|
|
}
|
|
|
|
// === deriv(node ValueTypeMatrix) Vector ===
|
|
func funcDeriv(ev *evaluator, args Expressions) Value {
|
|
mat := ev.evalMatrix(args[0])
|
|
resultVector := make(Vector, 0, len(mat))
|
|
|
|
for _, samples := range mat {
|
|
// No sense in trying to compute a derivative without at least two points.
|
|
// Drop this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
|
|
// We pass in an arbitrary timestamp that is near the values in use
|
|
// to avoid floating point accuracy issues, see
|
|
// https://github.com/prometheus/prometheus/issues/2674
|
|
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
|
resultSample := Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: slope, T: ev.Timestamp},
|
|
}
|
|
|
|
resultVector = append(resultVector, resultSample)
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
|
|
func funcPredictLinear(ev *evaluator, args Expressions) Value {
|
|
mat := ev.evalMatrix(args[0])
|
|
resultVector := make(Vector, 0, len(mat))
|
|
duration := ev.evalFloat(args[1])
|
|
|
|
for _, samples := range mat {
|
|
// No sense in trying to predict anything without at least two points.
|
|
// Drop this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
slope, intercept := linearRegression(samples.Points, ev.Timestamp)
|
|
|
|
resultVector = append(resultVector, Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: slope*duration + intercept, T: ev.Timestamp},
|
|
})
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
|
|
func funcHistogramQuantile(ev *evaluator, args Expressions) Value {
|
|
q := ev.evalFloat(args[0])
|
|
inVec := ev.evalVector(args[1])
|
|
|
|
outVec := Vector{}
|
|
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{}
|
|
for _, el := range inVec {
|
|
upperBound, err := strconv.ParseFloat(
|
|
el.Metric.Get(model.BucketLabel), 64,
|
|
)
|
|
if err != nil {
|
|
// Oops, no bucket label or malformed label value. Skip.
|
|
// TODO(beorn7): Issue a warning somehow.
|
|
continue
|
|
}
|
|
hash := hashWithoutLabels(el.Metric, excludedLabels...)
|
|
|
|
mb, ok := signatureToMetricWithBuckets[hash]
|
|
if !ok {
|
|
el.Metric = labels.NewBuilder(el.Metric).
|
|
Del(labels.BucketLabel, labels.MetricName).
|
|
Labels()
|
|
|
|
mb = &metricWithBuckets{el.Metric, nil}
|
|
signatureToMetricWithBuckets[hash] = mb
|
|
}
|
|
mb.buckets = append(mb.buckets, bucket{upperBound, el.V})
|
|
}
|
|
|
|
for _, mb := range signatureToMetricWithBuckets {
|
|
outVec = append(outVec, Sample{
|
|
Metric: mb.metric,
|
|
Point: Point{V: bucketQuantile(q, mb.buckets), T: ev.Timestamp},
|
|
})
|
|
}
|
|
|
|
return outVec
|
|
}
|
|
|
|
// === resets(Matrix ValueTypeMatrix) Vector ===
|
|
func funcResets(ev *evaluator, args Expressions) Value {
|
|
in := ev.evalMatrix(args[0])
|
|
out := make(Vector, 0, len(in))
|
|
|
|
for _, samples := range in {
|
|
resets := 0
|
|
prev := samples.Points[0].V
|
|
for _, sample := range samples.Points[1:] {
|
|
current := sample.V
|
|
if current < prev {
|
|
resets++
|
|
}
|
|
prev = current
|
|
}
|
|
|
|
out = append(out, Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: float64(resets), T: ev.Timestamp},
|
|
})
|
|
}
|
|
return out
|
|
}
|
|
|
|
// === changes(Matrix ValueTypeMatrix) Vector ===
|
|
func funcChanges(ev *evaluator, args Expressions) Value {
|
|
in := ev.evalMatrix(args[0])
|
|
out := make(Vector, 0, len(in))
|
|
|
|
for _, samples := range in {
|
|
changes := 0
|
|
prev := samples.Points[0].V
|
|
for _, sample := range samples.Points[1:] {
|
|
current := sample.V
|
|
if current != prev && !(math.IsNaN(float64(current)) && math.IsNaN(float64(prev))) {
|
|
changes++
|
|
}
|
|
prev = current
|
|
}
|
|
|
|
out = append(out, Sample{
|
|
Metric: dropMetricName(samples.Metric),
|
|
Point: Point{V: float64(changes), T: ev.Timestamp},
|
|
})
|
|
}
|
|
return out
|
|
}
|
|
|
|
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
|
|
func funcLabelReplace(ev *evaluator, args Expressions) Value {
|
|
var (
|
|
vector = ev.evalVector(args[0])
|
|
dst = ev.evalString(args[1]).V
|
|
repl = ev.evalString(args[2]).V
|
|
src = ev.evalString(args[3]).V
|
|
regexStr = ev.evalString(args[4]).V
|
|
)
|
|
|
|
regex, err := regexp.Compile("^(?:" + regexStr + ")$")
|
|
if err != nil {
|
|
ev.errorf("invalid regular expression in label_replace(): %s", regexStr)
|
|
}
|
|
if !model.LabelNameRE.MatchString(string(dst)) {
|
|
ev.errorf("invalid destination label name in label_replace(): %s", dst)
|
|
}
|
|
|
|
outSet := make(map[uint64]struct{}, len(vector))
|
|
for i := range vector {
|
|
el := &vector[i]
|
|
|
|
srcVal := el.Metric.Get(src)
|
|
indexes := regex.FindStringSubmatchIndex(srcVal)
|
|
// If there is no match, no replacement should take place.
|
|
if indexes == nil {
|
|
continue
|
|
}
|
|
res := regex.ExpandString([]byte{}, repl, srcVal, indexes)
|
|
|
|
lb := labels.NewBuilder(el.Metric).Del(dst)
|
|
if len(res) > 0 {
|
|
lb.Set(dst, string(res))
|
|
}
|
|
el.Metric = lb.Labels()
|
|
|
|
h := el.Metric.Hash()
|
|
if _, ok := outSet[h]; ok {
|
|
ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric)
|
|
} else {
|
|
outSet[h] = struct{}{}
|
|
}
|
|
}
|
|
|
|
return vector
|
|
}
|
|
|
|
// === Vector(s Scalar) Vector ===
|
|
func funcVector(ev *evaluator, args Expressions) Value {
|
|
return Vector{
|
|
Sample{
|
|
Metric: labels.Labels{},
|
|
Point: Point{V: ev.evalFloat(args[0]), T: ev.Timestamp},
|
|
},
|
|
}
|
|
}
|
|
|
|
// === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector ===
|
|
func funcLabelJoin(ev *evaluator, args Expressions) Value {
|
|
var (
|
|
vector = ev.evalVector(args[0])
|
|
dst = ev.evalString(args[1]).V
|
|
sep = ev.evalString(args[2]).V
|
|
srcLabels = make([]string, len(args)-3)
|
|
)
|
|
for i := 3; i < len(args); i++ {
|
|
src := ev.evalString(args[i]).V
|
|
if !model.LabelName(src).IsValid() {
|
|
ev.errorf("invalid source label name in label_join(): %s", src)
|
|
}
|
|
srcLabels[i-3] = src
|
|
}
|
|
|
|
if !model.LabelName(dst).IsValid() {
|
|
ev.errorf("invalid destination label name in label_join(): %s", dst)
|
|
}
|
|
|
|
outSet := make(map[uint64]struct{}, len(vector))
|
|
for i := range vector {
|
|
el := &vector[i]
|
|
|
|
srcVals := make([]string, len(srcLabels))
|
|
for i, src := range srcLabels {
|
|
srcVals[i] = el.Metric.Get(src)
|
|
}
|
|
|
|
lb := labels.NewBuilder(el.Metric)
|
|
|
|
strval := strings.Join(srcVals, sep)
|
|
if strval == "" {
|
|
lb.Del(dst)
|
|
} else {
|
|
lb.Set(dst, strval)
|
|
}
|
|
|
|
el.Metric = lb.Labels()
|
|
h := el.Metric.Hash()
|
|
|
|
if _, exists := outSet[h]; exists {
|
|
ev.errorf("duplicated label set in output of label_join(): %s", el.Metric)
|
|
} else {
|
|
outSet[h] = struct{}{}
|
|
}
|
|
}
|
|
return vector
|
|
}
|
|
|
|
// Common code for date related functions.
|
|
func dateWrapper(ev *evaluator, args Expressions, f func(time.Time) float64) Value {
|
|
var v Vector
|
|
if len(args) == 0 {
|
|
v = Vector{
|
|
Sample{
|
|
Metric: labels.Labels{},
|
|
Point: Point{V: float64(ev.Timestamp) / 1000, T: ev.Timestamp},
|
|
},
|
|
}
|
|
} else {
|
|
v = ev.evalVector(args[0])
|
|
}
|
|
for i := range v {
|
|
el := &v[i]
|
|
|
|
el.Metric = dropMetricName(el.Metric)
|
|
t := time.Unix(int64(el.V), 0).UTC()
|
|
el.V = f(t)
|
|
}
|
|
return v
|
|
}
|
|
|
|
// === days_in_month(v Vector) Scalar ===
|
|
func funcDaysInMonth(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day())
|
|
})
|
|
}
|
|
|
|
// === day_of_month(v Vector) Scalar ===
|
|
func funcDayOfMonth(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(t.Day())
|
|
})
|
|
}
|
|
|
|
// === day_of_week(v Vector) Scalar ===
|
|
func funcDayOfWeek(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(t.Weekday())
|
|
})
|
|
}
|
|
|
|
// === hour(v Vector) Scalar ===
|
|
func funcHour(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(t.Hour())
|
|
})
|
|
}
|
|
|
|
// === minute(v Vector) Scalar ===
|
|
func funcMinute(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(t.Minute())
|
|
})
|
|
}
|
|
|
|
// === month(v Vector) Scalar ===
|
|
func funcMonth(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(t.Month())
|
|
})
|
|
}
|
|
|
|
// === year(v Vector) Scalar ===
|
|
func funcYear(ev *evaluator, args Expressions) Value {
|
|
return dateWrapper(ev, args, func(t time.Time) float64 {
|
|
return float64(t.Year())
|
|
})
|
|
}
|
|
|
|
var functions = map[string]*Function{
|
|
"abs": {
|
|
Name: "abs",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcAbs,
|
|
},
|
|
"absent": {
|
|
Name: "absent",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcAbsent,
|
|
},
|
|
"avg_over_time": {
|
|
Name: "avg_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcAvgOverTime,
|
|
},
|
|
"ceil": {
|
|
Name: "ceil",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcCeil,
|
|
},
|
|
"changes": {
|
|
Name: "changes",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcChanges,
|
|
},
|
|
"clamp_max": {
|
|
Name: "clamp_max",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcClampMax,
|
|
},
|
|
"clamp_min": {
|
|
Name: "clamp_min",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcClampMin,
|
|
},
|
|
"count_over_time": {
|
|
Name: "count_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcCountOverTime,
|
|
},
|
|
"count_scalar": {
|
|
Name: "count_scalar",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeScalar,
|
|
Call: funcCountScalar,
|
|
},
|
|
"days_in_month": {
|
|
Name: "days_in_month",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDaysInMonth,
|
|
},
|
|
"day_of_month": {
|
|
Name: "day_of_month",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDayOfMonth,
|
|
},
|
|
"day_of_week": {
|
|
Name: "day_of_week",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDayOfWeek,
|
|
},
|
|
"delta": {
|
|
Name: "delta",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDelta,
|
|
},
|
|
"deriv": {
|
|
Name: "deriv",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDeriv,
|
|
},
|
|
"drop_common_labels": {
|
|
Name: "drop_common_labels",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDropCommonLabels,
|
|
},
|
|
"exp": {
|
|
Name: "exp",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcExp,
|
|
},
|
|
"floor": {
|
|
Name: "floor",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcFloor,
|
|
},
|
|
"histogram_quantile": {
|
|
Name: "histogram_quantile",
|
|
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcHistogramQuantile,
|
|
},
|
|
"holt_winters": {
|
|
Name: "holt_winters",
|
|
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcHoltWinters,
|
|
},
|
|
"hour": {
|
|
Name: "hour",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcHour,
|
|
},
|
|
"idelta": {
|
|
Name: "idelta",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcIdelta,
|
|
},
|
|
"increase": {
|
|
Name: "increase",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcIncrease,
|
|
},
|
|
"irate": {
|
|
Name: "irate",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcIrate,
|
|
},
|
|
"label_replace": {
|
|
Name: "label_replace",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLabelReplace,
|
|
},
|
|
"label_join": {
|
|
Name: "label_join",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString},
|
|
Variadic: -1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLabelJoin,
|
|
},
|
|
"ln": {
|
|
Name: "ln",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLn,
|
|
},
|
|
"log10": {
|
|
Name: "log10",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLog10,
|
|
},
|
|
"log2": {
|
|
Name: "log2",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLog2,
|
|
},
|
|
"max_over_time": {
|
|
Name: "max_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMaxOverTime,
|
|
},
|
|
"min_over_time": {
|
|
Name: "min_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMinOverTime,
|
|
},
|
|
"minute": {
|
|
Name: "minute",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMinute,
|
|
},
|
|
"month": {
|
|
Name: "month",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMonth,
|
|
},
|
|
"predict_linear": {
|
|
Name: "predict_linear",
|
|
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcPredictLinear,
|
|
},
|
|
"quantile_over_time": {
|
|
Name: "quantile_over_time",
|
|
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcQuantileOverTime,
|
|
},
|
|
"rate": {
|
|
Name: "rate",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcRate,
|
|
},
|
|
"resets": {
|
|
Name: "resets",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcResets,
|
|
},
|
|
"round": {
|
|
Name: "round",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcRound,
|
|
},
|
|
"scalar": {
|
|
Name: "scalar",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeScalar,
|
|
Call: funcScalar,
|
|
},
|
|
"sort": {
|
|
Name: "sort",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSort,
|
|
},
|
|
"sort_desc": {
|
|
Name: "sort_desc",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSortDesc,
|
|
},
|
|
"sqrt": {
|
|
Name: "sqrt",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSqrt,
|
|
},
|
|
"stddev_over_time": {
|
|
Name: "stddev_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcStddevOverTime,
|
|
},
|
|
"stdvar_over_time": {
|
|
Name: "stdvar_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcStdvarOverTime,
|
|
},
|
|
"sum_over_time": {
|
|
Name: "sum_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSumOverTime,
|
|
},
|
|
"time": {
|
|
Name: "time",
|
|
ArgTypes: []ValueType{},
|
|
ReturnType: ValueTypeScalar,
|
|
Call: funcTime,
|
|
},
|
|
"timestamp": {
|
|
Name: "timestamp",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcTimestamp,
|
|
},
|
|
"vector": {
|
|
Name: "vector",
|
|
ArgTypes: []ValueType{ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcVector,
|
|
},
|
|
"year": {
|
|
Name: "year",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcYear,
|
|
},
|
|
}
|
|
|
|
// getFunction returns a predefined Function object for the given name.
|
|
func getFunction(name string) (*Function, bool) {
|
|
function, ok := functions[name]
|
|
return function, ok
|
|
}
|
|
|
|
type vectorByValueHeap Vector
|
|
|
|
func (s vectorByValueHeap) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool {
|
|
if math.IsNaN(float64(s[i].V)) {
|
|
return true
|
|
}
|
|
return s[i].V < s[j].V
|
|
}
|
|
|
|
func (s vectorByValueHeap) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) {
|
|
*s = append(*s, *(x.(*Sample)))
|
|
}
|
|
|
|
func (s *vectorByValueHeap) Pop() interface{} {
|
|
old := *s
|
|
n := len(old)
|
|
el := old[n-1]
|
|
*s = old[0 : n-1]
|
|
return el
|
|
}
|
|
|
|
type vectorByReverseValueHeap Vector
|
|
|
|
func (s vectorByReverseValueHeap) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
func (s vectorByReverseValueHeap) Less(i, j int) bool {
|
|
if math.IsNaN(float64(s[i].V)) {
|
|
return true
|
|
}
|
|
return s[i].V > s[j].V
|
|
}
|
|
|
|
func (s vectorByReverseValueHeap) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
func (s *vectorByReverseValueHeap) Push(x interface{}) {
|
|
*s = append(*s, *(x.(*Sample)))
|
|
}
|
|
|
|
func (s *vectorByReverseValueHeap) Pop() interface{} {
|
|
old := *s
|
|
n := len(old)
|
|
el := old[n-1]
|
|
*s = old[0 : n-1]
|
|
return el
|
|
}
|