You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/tsdb/chunkenc/histogram_meta.go

335 lines
9.9 KiB

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunkenc
import (
"math"
"github.com/prometheus/prometheus/model/histogram"
)
func writeHistogramChunkLayout(b *bstream, schema int32, zeroThreshold float64, positiveSpans, negativeSpans []histogram.Span) {
putZeroThreshold(b, zeroThreshold)
putVarbitInt(b, int64(schema))
putHistogramChunkLayoutSpans(b, positiveSpans)
putHistogramChunkLayoutSpans(b, negativeSpans)
}
func readHistogramChunkLayout(b *bstreamReader) (
schema int32, zeroThreshold float64,
positiveSpans, negativeSpans []histogram.Span,
err error,
) {
zeroThreshold, err = readZeroThreshold(b)
if err != nil {
return
}
v, err := readVarbitInt(b)
if err != nil {
return
}
schema = int32(v)
positiveSpans, err = readHistogramChunkLayoutSpans(b)
if err != nil {
return
}
negativeSpans, err = readHistogramChunkLayoutSpans(b)
if err != nil {
return
}
return
}
func putHistogramChunkLayoutSpans(b *bstream, spans []histogram.Span) {
putVarbitUint(b, uint64(len(spans)))
for _, s := range spans {
putVarbitUint(b, uint64(s.Length))
putVarbitInt(b, int64(s.Offset))
}
}
func readHistogramChunkLayoutSpans(b *bstreamReader) ([]histogram.Span, error) {
var spans []histogram.Span
num, err := readVarbitUint(b)
if err != nil {
return nil, err
}
for i := 0; i < int(num); i++ {
length, err := readVarbitUint(b)
if err != nil {
return nil, err
}
offset, err := readVarbitInt(b)
if err != nil {
return nil, err
}
spans = append(spans, histogram.Span{
Length: uint32(length),
Offset: int32(offset),
})
}
return spans, nil
}
// putZeroThreshold writes the zero threshold to the bstream. It stores typical
// values in just one byte, but needs 9 bytes for other values. In detail:
//
// * If the threshold is 0, store a single zero byte.
//
// - If the threshold is a power of 2 between (and including) 2^-243 and 2^10,
// take the exponent from the IEEE 754 representation of the threshold, which
// covers a range between (and including) -242 and 11. (2^-243 is 0.5*2^-242
// in IEEE 754 representation, and 2^10 is 0.5*2^11.) Add 243 to the exponent
// and store the result (which will be between 1 and 254) as a single
// byte. Note that small powers of two are preferred values for the zero
// threshold. The default value for the zero threshold is 2^-128 (or
// 0.5*2^-127 in IEEE 754 representation) and will therefore be encoded as a
// single byte (with value 116).
//
// - In all other cases, store 255 as a single byte, followed by the 8 bytes of
// the threshold as a float64, i.e. taking 9 bytes in total.
func putZeroThreshold(b *bstream, threshold float64) {
if threshold == 0 {
b.writeByte(0)
return
}
frac, exp := math.Frexp(threshold)
if frac != 0.5 || exp < -242 || exp > 11 {
b.writeByte(255)
b.writeBits(math.Float64bits(threshold), 64)
return
}
b.writeByte(byte(exp + 243))
}
// readZeroThreshold reads the zero threshold written with putZeroThreshold.
func readZeroThreshold(br *bstreamReader) (float64, error) {
b, err := br.ReadByte()
if err != nil {
return 0, err
}
switch b {
case 0:
return 0, nil
case 255:
v, err := br.readBits(64)
if err != nil {
return 0, err
}
return math.Float64frombits(v), nil
default:
return math.Ldexp(0.5, int(b)-243), nil
}
}
type bucketIterator struct {
spans []histogram.Span
span int // Span position of last yielded bucket.
bucket int // Bucket position within span of last yielded bucket.
idx int // Bucket index (globally across all spans) of last yielded bucket.
}
func newBucketIterator(spans []histogram.Span) *bucketIterator {
b := bucketIterator{
spans: spans,
span: 0,
bucket: -1,
idx: -1,
}
if len(spans) > 0 {
b.idx += int(spans[0].Offset)
}
return &b
}
func (b *bucketIterator) Next() (int, bool) {
// We're already out of bounds.
if b.span >= len(b.spans) {
return 0, false
}
try:
if b.bucket < int(b.spans[b.span].Length-1) { // Try to move within same span.
b.bucket++
b.idx++
return b.idx, true
} else if b.span < len(b.spans)-1 { // Try to move from one span to the next.
b.span++
b.idx += int(b.spans[b.span].Offset + 1)
b.bucket = 0
if b.spans[b.span].Length == 0 {
// Pathological case that should never happen. We can't use this span, let's try again.
goto try
}
return b.idx, true
}
// We're out of options.
return 0, false
}
// An Interjection describes how many new buckets have to be introduced before
// processing the pos'th delta from the original slice.
type Interjection struct {
pos int
num int
}
// compareSpans returns the interjections to convert a slice of deltas to a new
// slice representing an expanded set of buckets, or false if incompatible
// (e.g. if buckets were removed).
//
// Example:
//
// Let's say the old buckets look like this:
//
// span syntax: [offset, length]
// spans : [ 0 , 2 ] [2,1] [ 3 , 2 ] [3,1] [1,1]
// bucket idx : [0] [1] 2 3 [4] 5 6 7 [8] [9] 10 11 12 [13] 14 [15]
// raw values 6 3 3 2 4 5 1
// deltas 6 -3 0 -1 2 1 -4
//
// But now we introduce a new bucket layout. (Carefully chosen example where we
// have a span appended, one unchanged[*], one prepended, and two merge - in
// that order.)
//
// [*] unchanged in terms of which bucket indices they represent. but to achieve
// that, their offset needs to change if "disrupted" by spans changing ahead of
// them
//
// \/ this one is "unchanged"
// spans : [ 0 , 3 ] [1,1] [ 1 , 4 ] [ 3 , 3 ]
// bucket idx : [0] [1] [2] 3 [4] 5 [6] [7] [8] [9] 10 11 12 [13] [14] [15]
// raw values 6 3 0 3 0 0 2 4 5 0 1
// deltas 6 -3 -3 3 -3 0 2 2 1 -5 1
// delta mods: / \ / \ / \
//
// Note that whenever any new buckets are introduced, the subsequent "old"
// bucket needs to readjust its delta to the new base of 0. Thus, for the caller
// who wants to transform the set of original deltas to a new set of deltas to
// match a new span layout that adds buckets, we simply need to generate a list
// of interjections.
//
// Note: Within compareSpans we don't have to worry about the changes to the
// spans themselves, thanks to the iterators we get to work with the more useful
// bucket indices (which of course directly correspond to the buckets we have to
// adjust).
func compareSpans(a, b []histogram.Span) ([]Interjection, bool) {
ai := newBucketIterator(a)
bi := newBucketIterator(b)
var interjections []Interjection
// When inter.num becomes > 0, this becomes a valid interjection that
// should be yielded when we finish a streak of new buckets.
var inter Interjection
av, aOK := ai.Next()
bv, bOK := bi.Next()
loop:
for {
switch {
case aOK && bOK:
switch {
case av == bv: // Both have an identical value. move on!
// Finish WIP interjection and reset.
if inter.num > 0 {
interjections = append(interjections, inter)
}
inter.num = 0
av, aOK = ai.Next()
bv, bOK = bi.Next()
inter.pos++
case av < bv: // b misses a value that is in a.
return interjections, false
case av > bv: // a misses a value that is in b. Forward b and recompare.
inter.num++
bv, bOK = bi.Next()
}
case aOK && !bOK: // b misses a value that is in a.
return interjections, false
case !aOK && bOK: // a misses a value that is in b. Forward b and recompare.
inter.num++
bv, bOK = bi.Next()
default: // Both iterators ran out. We're done.
if inter.num > 0 {
interjections = append(interjections, inter)
}
break loop
}
}
return interjections, true
}
// interject merges 'in' with the provided interjections and writes them into
// 'out', which must already have the appropriate length.
func interject(in, out []int64, interjections []Interjection) []int64 {
var (
j int // Position in out.
v int64 // The last value seen.
interj int // The next interjection to process.
)
for i, d := range in {
if interj < len(interjections) && i == interjections[interj].pos {
// We have an interjection!
// Add interjection.num new delta values such that their
// bucket values equate 0.
out[j] = int64(-v)
j++
for x := 1; x < interjections[interj].num; x++ {
out[j] = 0
j++
}
interj++
// Now save the value from the input. The delta value we
// should save is the original delta value + the last
// value of the point before the interjection (to undo
// the delta that was introduced by the interjection).
out[j] = d + v
j++
v = d + v
continue
}
// If there was no interjection, the original delta is still
// valid.
out[j] = d
j++
v += d
}
switch interj {
case len(interjections):
// All interjections processed. Nothing more to do.
case len(interjections) - 1:
// One more interjection to process at the end.
out[j] = int64(-v)
j++
for x := 1; x < interjections[interj].num; x++ {
out[j] = 0
j++
}
default:
panic("unprocessed interjections left")
}
return out
}