mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
633 lines
20 KiB
633 lines
20 KiB
// Copyright 2021 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package histogram
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"slices"
|
|
"strings"
|
|
)
|
|
|
|
// CounterResetHint contains the known information about a counter reset,
|
|
// or alternatively that we are dealing with a gauge histogram, where counter resets do not apply.
|
|
type CounterResetHint byte
|
|
|
|
const (
|
|
UnknownCounterReset CounterResetHint = iota // UnknownCounterReset means we cannot say if this histogram signals a counter reset or not.
|
|
CounterReset // CounterReset means there was definitely a counter reset starting from this histogram.
|
|
NotCounterReset // NotCounterReset means there was definitely no counter reset with this histogram.
|
|
GaugeType // GaugeType means this is a gauge histogram, where counter resets do not happen.
|
|
)
|
|
|
|
// Histogram encodes a sparse, high-resolution histogram. See the design
|
|
// document for full details:
|
|
// https://docs.google.com/document/d/1cLNv3aufPZb3fNfaJgdaRBZsInZKKIHo9E6HinJVbpM/edit#
|
|
//
|
|
// The most tricky bit is how bucket indices represent real bucket boundaries.
|
|
// An example for schema 0 (by which each bucket is twice as wide as the
|
|
// previous bucket):
|
|
//
|
|
// Bucket boundaries → [-2,-1) [-1,-0.5) [-0.5,-0.25) ... [-0.001,0.001] ... (0.25,0.5] (0.5,1] (1,2] ....
|
|
// ↑ ↑ ↑ ↑ ↑ ↑ ↑
|
|
// Zero bucket (width e.g. 0.001) → | | | ZB | | |
|
|
// Positive bucket indices → | | | ... -1 0 1 2 3
|
|
// Negative bucket indices → 3 2 1 0 -1 ...
|
|
//
|
|
// Which bucket indices are actually used is determined by the spans.
|
|
type Histogram struct {
|
|
// Counter reset information.
|
|
CounterResetHint CounterResetHint
|
|
// Currently valid schema numbers are -4 <= n <= 8 for exponential buckets,
|
|
// They are all for base-2 bucket schemas, where 1 is a bucket boundary in
|
|
// each case, and then each power of two is divided into 2^n logarithmic buckets.
|
|
// Or in other words, each bucket boundary is the previous boundary times
|
|
// 2^(2^-n). Another valid schema number is -53 for custom buckets, defined by
|
|
// the CustomValues field.
|
|
Schema int32
|
|
// Width of the zero bucket.
|
|
ZeroThreshold float64
|
|
// Observations falling into the zero bucket.
|
|
ZeroCount uint64
|
|
// Total number of observations.
|
|
Count uint64
|
|
// Sum of observations. This is also used as the stale marker.
|
|
Sum float64
|
|
// Spans for positive and negative buckets (see Span below).
|
|
PositiveSpans, NegativeSpans []Span
|
|
// Observation counts in buckets. The first element is an absolute
|
|
// count. All following ones are deltas relative to the previous
|
|
// element.
|
|
PositiveBuckets, NegativeBuckets []int64
|
|
// Holds the custom (usually upper) bounds for bucket definitions, otherwise nil.
|
|
// This slice is interned, to be treated as immutable and copied by reference.
|
|
// These numbers should be strictly increasing. This field is only used when the
|
|
// schema is for custom buckets, and the ZeroThreshold, ZeroCount, NegativeSpans
|
|
// and NegativeBuckets fields are not used in that case.
|
|
CustomValues []float64
|
|
}
|
|
|
|
// A Span defines a continuous sequence of buckets.
|
|
type Span struct {
|
|
// Gap to previous span (always positive), or starting index for the 1st
|
|
// span (which can be negative).
|
|
Offset int32
|
|
// Length of the span.
|
|
Length uint32
|
|
}
|
|
|
|
func (h *Histogram) UsesCustomBuckets() bool {
|
|
return IsCustomBucketsSchema(h.Schema)
|
|
}
|
|
|
|
// Copy returns a deep copy of the Histogram.
|
|
func (h *Histogram) Copy() *Histogram {
|
|
c := Histogram{
|
|
CounterResetHint: h.CounterResetHint,
|
|
Schema: h.Schema,
|
|
Count: h.Count,
|
|
Sum: h.Sum,
|
|
}
|
|
|
|
if h.UsesCustomBuckets() {
|
|
if len(h.CustomValues) != 0 {
|
|
c.CustomValues = make([]float64, len(h.CustomValues))
|
|
copy(c.CustomValues, h.CustomValues)
|
|
}
|
|
} else {
|
|
c.ZeroThreshold = h.ZeroThreshold
|
|
c.ZeroCount = h.ZeroCount
|
|
|
|
if len(h.NegativeSpans) != 0 {
|
|
c.NegativeSpans = make([]Span, len(h.NegativeSpans))
|
|
copy(c.NegativeSpans, h.NegativeSpans)
|
|
}
|
|
if len(h.NegativeBuckets) != 0 {
|
|
c.NegativeBuckets = make([]int64, len(h.NegativeBuckets))
|
|
copy(c.NegativeBuckets, h.NegativeBuckets)
|
|
}
|
|
}
|
|
|
|
if len(h.PositiveSpans) != 0 {
|
|
c.PositiveSpans = make([]Span, len(h.PositiveSpans))
|
|
copy(c.PositiveSpans, h.PositiveSpans)
|
|
}
|
|
if len(h.PositiveBuckets) != 0 {
|
|
c.PositiveBuckets = make([]int64, len(h.PositiveBuckets))
|
|
copy(c.PositiveBuckets, h.PositiveBuckets)
|
|
}
|
|
|
|
return &c
|
|
}
|
|
|
|
// CopyTo makes a deep copy into the given Histogram object.
|
|
// The destination object has to be a non-nil pointer.
|
|
func (h *Histogram) CopyTo(to *Histogram) {
|
|
to.CounterResetHint = h.CounterResetHint
|
|
to.Schema = h.Schema
|
|
to.Count = h.Count
|
|
to.Sum = h.Sum
|
|
|
|
if h.UsesCustomBuckets() {
|
|
to.ZeroThreshold = 0
|
|
to.ZeroCount = 0
|
|
|
|
to.NegativeSpans = clearIfNotNil(to.NegativeSpans)
|
|
to.NegativeBuckets = clearIfNotNil(to.NegativeBuckets)
|
|
|
|
to.CustomValues = resize(to.CustomValues, len(h.CustomValues))
|
|
copy(to.CustomValues, h.CustomValues)
|
|
} else {
|
|
to.ZeroThreshold = h.ZeroThreshold
|
|
to.ZeroCount = h.ZeroCount
|
|
|
|
to.NegativeSpans = resize(to.NegativeSpans, len(h.NegativeSpans))
|
|
copy(to.NegativeSpans, h.NegativeSpans)
|
|
|
|
to.NegativeBuckets = resize(to.NegativeBuckets, len(h.NegativeBuckets))
|
|
copy(to.NegativeBuckets, h.NegativeBuckets)
|
|
|
|
to.CustomValues = clearIfNotNil(to.CustomValues)
|
|
}
|
|
|
|
to.PositiveSpans = resize(to.PositiveSpans, len(h.PositiveSpans))
|
|
copy(to.PositiveSpans, h.PositiveSpans)
|
|
|
|
to.PositiveBuckets = resize(to.PositiveBuckets, len(h.PositiveBuckets))
|
|
copy(to.PositiveBuckets, h.PositiveBuckets)
|
|
}
|
|
|
|
// String returns a string representation of the Histogram.
|
|
func (h *Histogram) String() string {
|
|
var sb strings.Builder
|
|
fmt.Fprintf(&sb, "{count:%d, sum:%g", h.Count, h.Sum)
|
|
|
|
var nBuckets []Bucket[uint64]
|
|
for it := h.NegativeBucketIterator(); it.Next(); {
|
|
bucket := it.At()
|
|
if bucket.Count != 0 {
|
|
nBuckets = append(nBuckets, it.At())
|
|
}
|
|
}
|
|
for i := len(nBuckets) - 1; i >= 0; i-- {
|
|
fmt.Fprintf(&sb, ", %s", nBuckets[i].String())
|
|
}
|
|
|
|
if h.ZeroCount != 0 {
|
|
fmt.Fprintf(&sb, ", %s", h.ZeroBucket().String())
|
|
}
|
|
|
|
for it := h.PositiveBucketIterator(); it.Next(); {
|
|
bucket := it.At()
|
|
if bucket.Count != 0 {
|
|
fmt.Fprintf(&sb, ", %s", bucket.String())
|
|
}
|
|
}
|
|
|
|
sb.WriteRune('}')
|
|
return sb.String()
|
|
}
|
|
|
|
// ZeroBucket returns the zero bucket. This method panics if the schema is for custom buckets.
|
|
func (h *Histogram) ZeroBucket() Bucket[uint64] {
|
|
if h.UsesCustomBuckets() {
|
|
panic("histograms with custom buckets have no zero bucket")
|
|
}
|
|
return Bucket[uint64]{
|
|
Lower: -h.ZeroThreshold,
|
|
Upper: h.ZeroThreshold,
|
|
LowerInclusive: true,
|
|
UpperInclusive: true,
|
|
Count: h.ZeroCount,
|
|
}
|
|
}
|
|
|
|
// PositiveBucketIterator returns a BucketIterator to iterate over all positive
|
|
// buckets in ascending order (starting next to the zero bucket and going up).
|
|
func (h *Histogram) PositiveBucketIterator() BucketIterator[uint64] {
|
|
it := newRegularBucketIterator(h.PositiveSpans, h.PositiveBuckets, h.Schema, true, h.CustomValues)
|
|
return &it
|
|
}
|
|
|
|
// NegativeBucketIterator returns a BucketIterator to iterate over all negative
|
|
// buckets in descending order (starting next to the zero bucket and going down).
|
|
func (h *Histogram) NegativeBucketIterator() BucketIterator[uint64] {
|
|
it := newRegularBucketIterator(h.NegativeSpans, h.NegativeBuckets, h.Schema, false, nil)
|
|
return &it
|
|
}
|
|
|
|
// CumulativeBucketIterator returns a BucketIterator to iterate over a
|
|
// cumulative view of the buckets. This method currently only supports
|
|
// Histograms without negative buckets and panics if the Histogram has negative
|
|
// buckets. It is currently only used for testing.
|
|
func (h *Histogram) CumulativeBucketIterator() BucketIterator[uint64] {
|
|
if len(h.NegativeBuckets) > 0 {
|
|
panic("CumulativeBucketIterator called on Histogram with negative buckets")
|
|
}
|
|
return &cumulativeBucketIterator{h: h, posSpansIdx: -1}
|
|
}
|
|
|
|
// Equals returns true if the given histogram matches exactly.
|
|
// Exact match is when there are no new buckets (even empty) and no missing buckets,
|
|
// and all the bucket values match. Spans can have different empty length spans in between,
|
|
// but they must represent the same bucket layout to match.
|
|
// Sum is compared based on its bit pattern because this method
|
|
// is about data equality rather than mathematical equality.
|
|
// We ignore fields that are not used based on the exponential / custom buckets schema,
|
|
// but check fields where differences may cause unintended behaviour even if they are not
|
|
// supposed to be used according to the schema.
|
|
func (h *Histogram) Equals(h2 *Histogram) bool {
|
|
if h2 == nil {
|
|
return false
|
|
}
|
|
|
|
if h.Schema != h2.Schema || h.Count != h2.Count ||
|
|
math.Float64bits(h.Sum) != math.Float64bits(h2.Sum) {
|
|
return false
|
|
}
|
|
|
|
if h.UsesCustomBuckets() {
|
|
if !FloatBucketsMatch(h.CustomValues, h2.CustomValues) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
if h.ZeroThreshold != h2.ZeroThreshold || h.ZeroCount != h2.ZeroCount {
|
|
return false
|
|
}
|
|
|
|
if !spansMatch(h.NegativeSpans, h2.NegativeSpans) {
|
|
return false
|
|
}
|
|
if !slices.Equal(h.NegativeBuckets, h2.NegativeBuckets) {
|
|
return false
|
|
}
|
|
|
|
if !spansMatch(h.PositiveSpans, h2.PositiveSpans) {
|
|
return false
|
|
}
|
|
if !slices.Equal(h.PositiveBuckets, h2.PositiveBuckets) {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// spansMatch returns true if both spans represent the same bucket layout
|
|
// after combining zero length spans with the next non-zero length span.
|
|
func spansMatch(s1, s2 []Span) bool {
|
|
if len(s1) == 0 && len(s2) == 0 {
|
|
return true
|
|
}
|
|
|
|
s1idx, s2idx := 0, 0
|
|
for {
|
|
if s1idx >= len(s1) {
|
|
return allEmptySpans(s2[s2idx:])
|
|
}
|
|
if s2idx >= len(s2) {
|
|
return allEmptySpans(s1[s1idx:])
|
|
}
|
|
|
|
currS1, currS2 := s1[s1idx], s2[s2idx]
|
|
s1idx++
|
|
s2idx++
|
|
if currS1.Length == 0 {
|
|
// This span is zero length, so we add consecutive such spans
|
|
// until we find a non-zero span.
|
|
for ; s1idx < len(s1) && s1[s1idx].Length == 0; s1idx++ {
|
|
currS1.Offset += s1[s1idx].Offset
|
|
}
|
|
if s1idx < len(s1) {
|
|
currS1.Offset += s1[s1idx].Offset
|
|
currS1.Length = s1[s1idx].Length
|
|
s1idx++
|
|
}
|
|
}
|
|
if currS2.Length == 0 {
|
|
// This span is zero length, so we add consecutive such spans
|
|
// until we find a non-zero span.
|
|
for ; s2idx < len(s2) && s2[s2idx].Length == 0; s2idx++ {
|
|
currS2.Offset += s2[s2idx].Offset
|
|
}
|
|
if s2idx < len(s2) {
|
|
currS2.Offset += s2[s2idx].Offset
|
|
currS2.Length = s2[s2idx].Length
|
|
s2idx++
|
|
}
|
|
}
|
|
|
|
if currS1.Length == 0 && currS2.Length == 0 {
|
|
// The last spans of both set are zero length. Previous spans match.
|
|
return true
|
|
}
|
|
|
|
if currS1.Offset != currS2.Offset || currS1.Length != currS2.Length {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
|
|
func allEmptySpans(s []Span) bool {
|
|
for _, ss := range s {
|
|
if ss.Length > 0 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Compact works like FloatHistogram.Compact. See there for detailed
|
|
// explanations.
|
|
func (h *Histogram) Compact(maxEmptyBuckets int) *Histogram {
|
|
h.PositiveBuckets, h.PositiveSpans = compactBuckets(
|
|
h.PositiveBuckets, h.PositiveSpans, maxEmptyBuckets, true,
|
|
)
|
|
h.NegativeBuckets, h.NegativeSpans = compactBuckets(
|
|
h.NegativeBuckets, h.NegativeSpans, maxEmptyBuckets, true,
|
|
)
|
|
return h
|
|
}
|
|
|
|
// ToFloat returns a FloatHistogram representation of the Histogram. It is a deep
|
|
// copy (e.g. spans are not shared). The function accepts a FloatHistogram as an
|
|
// argument whose memory will be reused and overwritten if provided. If this
|
|
// argument is nil, a new FloatHistogram will be allocated.
|
|
func (h *Histogram) ToFloat(fh *FloatHistogram) *FloatHistogram {
|
|
if fh == nil {
|
|
fh = &FloatHistogram{}
|
|
}
|
|
fh.CounterResetHint = h.CounterResetHint
|
|
fh.Schema = h.Schema
|
|
fh.Count = float64(h.Count)
|
|
fh.Sum = h.Sum
|
|
|
|
if h.UsesCustomBuckets() {
|
|
fh.ZeroThreshold = 0
|
|
fh.ZeroCount = 0
|
|
fh.NegativeSpans = clearIfNotNil(fh.NegativeSpans)
|
|
fh.NegativeBuckets = clearIfNotNil(fh.NegativeBuckets)
|
|
|
|
fh.CustomValues = resize(fh.CustomValues, len(h.CustomValues))
|
|
copy(fh.CustomValues, h.CustomValues)
|
|
} else {
|
|
fh.ZeroThreshold = h.ZeroThreshold
|
|
fh.ZeroCount = float64(h.ZeroCount)
|
|
|
|
fh.NegativeSpans = resize(fh.NegativeSpans, len(h.NegativeSpans))
|
|
copy(fh.NegativeSpans, h.NegativeSpans)
|
|
|
|
fh.NegativeBuckets = resize(fh.NegativeBuckets, len(h.NegativeBuckets))
|
|
var currentNegative float64
|
|
for i, b := range h.NegativeBuckets {
|
|
currentNegative += float64(b)
|
|
fh.NegativeBuckets[i] = currentNegative
|
|
}
|
|
fh.CustomValues = clearIfNotNil(fh.CustomValues)
|
|
}
|
|
|
|
fh.PositiveSpans = resize(fh.PositiveSpans, len(h.PositiveSpans))
|
|
copy(fh.PositiveSpans, h.PositiveSpans)
|
|
|
|
fh.PositiveBuckets = resize(fh.PositiveBuckets, len(h.PositiveBuckets))
|
|
var currentPositive float64
|
|
for i, b := range h.PositiveBuckets {
|
|
currentPositive += float64(b)
|
|
fh.PositiveBuckets[i] = currentPositive
|
|
}
|
|
|
|
return fh
|
|
}
|
|
|
|
func resize[T any](items []T, n int) []T {
|
|
if cap(items) < n {
|
|
return make([]T, n)
|
|
}
|
|
return items[:n]
|
|
}
|
|
|
|
// Validate validates consistency between span and bucket slices. Also, buckets are checked
|
|
// against negative values. We check to make sure there are no unexpected fields or field values
|
|
// based on the exponential / custom buckets schema.
|
|
// For histograms that have not observed any NaN values (based on IsNaN(h.Sum) check), a
|
|
// strict h.Count = nCount + pCount + h.ZeroCount check is performed.
|
|
// Otherwise, only a lower bound check will be done (h.Count >= nCount + pCount + h.ZeroCount),
|
|
// because NaN observations do not increment the values of buckets (but they do increment
|
|
// the total h.Count).
|
|
func (h *Histogram) Validate() error {
|
|
var nCount, pCount uint64
|
|
if h.UsesCustomBuckets() {
|
|
if err := checkHistogramCustomBounds(h.CustomValues, h.PositiveSpans, len(h.PositiveBuckets)); err != nil {
|
|
return fmt.Errorf("custom buckets: %w", err)
|
|
}
|
|
if h.ZeroCount != 0 {
|
|
return fmt.Errorf("custom buckets: must have zero count of 0")
|
|
}
|
|
if h.ZeroThreshold != 0 {
|
|
return fmt.Errorf("custom buckets: must have zero threshold of 0")
|
|
}
|
|
if len(h.NegativeSpans) > 0 {
|
|
return fmt.Errorf("custom buckets: must not have negative spans")
|
|
}
|
|
if len(h.NegativeBuckets) > 0 {
|
|
return fmt.Errorf("custom buckets: must not have negative buckets")
|
|
}
|
|
} else {
|
|
if err := checkHistogramSpans(h.PositiveSpans, len(h.PositiveBuckets)); err != nil {
|
|
return fmt.Errorf("positive side: %w", err)
|
|
}
|
|
if err := checkHistogramSpans(h.NegativeSpans, len(h.NegativeBuckets)); err != nil {
|
|
return fmt.Errorf("negative side: %w", err)
|
|
}
|
|
err := checkHistogramBuckets(h.NegativeBuckets, &nCount, true)
|
|
if err != nil {
|
|
return fmt.Errorf("negative side: %w", err)
|
|
}
|
|
if h.CustomValues != nil {
|
|
return fmt.Errorf("histogram with exponential schema must not have custom bounds")
|
|
}
|
|
}
|
|
err := checkHistogramBuckets(h.PositiveBuckets, &pCount, true)
|
|
if err != nil {
|
|
return fmt.Errorf("positive side: %w", err)
|
|
}
|
|
|
|
sumOfBuckets := nCount + pCount + h.ZeroCount
|
|
if math.IsNaN(h.Sum) {
|
|
if sumOfBuckets > h.Count {
|
|
return fmt.Errorf("%d observations found in buckets, but the Count field is %d: %w", sumOfBuckets, h.Count, ErrHistogramCountNotBigEnough)
|
|
}
|
|
} else {
|
|
if sumOfBuckets != h.Count {
|
|
return fmt.Errorf("%d observations found in buckets, but the Count field is %d: %w", sumOfBuckets, h.Count, ErrHistogramCountMismatch)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type regularBucketIterator struct {
|
|
baseBucketIterator[uint64, int64]
|
|
}
|
|
|
|
func newRegularBucketIterator(spans []Span, buckets []int64, schema int32, positive bool, customValues []float64) regularBucketIterator {
|
|
i := baseBucketIterator[uint64, int64]{
|
|
schema: schema,
|
|
spans: spans,
|
|
buckets: buckets,
|
|
positive: positive,
|
|
customValues: customValues,
|
|
}
|
|
return regularBucketIterator{i}
|
|
}
|
|
|
|
func (r *regularBucketIterator) Next() bool {
|
|
if r.spansIdx >= len(r.spans) {
|
|
return false
|
|
}
|
|
span := r.spans[r.spansIdx]
|
|
// Seed currIdx for the first bucket.
|
|
if r.bucketsIdx == 0 {
|
|
r.currIdx = span.Offset
|
|
} else {
|
|
r.currIdx++
|
|
}
|
|
for r.idxInSpan >= span.Length {
|
|
// We have exhausted the current span and have to find a new
|
|
// one. We'll even handle pathologic spans of length 0.
|
|
r.idxInSpan = 0
|
|
r.spansIdx++
|
|
if r.spansIdx >= len(r.spans) {
|
|
return false
|
|
}
|
|
span = r.spans[r.spansIdx]
|
|
r.currIdx += span.Offset
|
|
}
|
|
|
|
r.currCount += r.buckets[r.bucketsIdx]
|
|
r.idxInSpan++
|
|
r.bucketsIdx++
|
|
return true
|
|
}
|
|
|
|
type cumulativeBucketIterator struct {
|
|
h *Histogram
|
|
|
|
posSpansIdx int // Index in h.PositiveSpans we are in. -1 means 0 bucket.
|
|
posBucketsIdx int // Index in h.PositiveBuckets.
|
|
idxInSpan uint32 // Index in the current span. 0 <= idxInSpan < span.Length.
|
|
|
|
initialized bool
|
|
currIdx int32 // The actual bucket index after decoding from spans.
|
|
currUpper float64 // The upper boundary of the current bucket.
|
|
currCount int64 // Current non-cumulative count for the current bucket. Does not apply for empty bucket.
|
|
currCumulativeCount uint64 // Current "cumulative" count for the current bucket.
|
|
|
|
// Between 2 spans there could be some empty buckets which
|
|
// still needs to be counted for cumulative buckets.
|
|
// When we hit the end of a span, we use this to iterate
|
|
// through the empty buckets.
|
|
emptyBucketCount int32
|
|
}
|
|
|
|
func (c *cumulativeBucketIterator) Next() bool {
|
|
if c.posSpansIdx == -1 {
|
|
// Zero bucket.
|
|
c.posSpansIdx++
|
|
if c.h.ZeroCount == 0 {
|
|
return c.Next()
|
|
}
|
|
|
|
c.currUpper = c.h.ZeroThreshold
|
|
c.currCount = int64(c.h.ZeroCount)
|
|
c.currCumulativeCount = uint64(c.currCount)
|
|
return true
|
|
}
|
|
|
|
if c.posSpansIdx >= len(c.h.PositiveSpans) {
|
|
return false
|
|
}
|
|
|
|
if c.emptyBucketCount > 0 {
|
|
// We are traversing through empty buckets at the moment.
|
|
c.currUpper = getBound(c.currIdx, c.h.Schema, c.h.CustomValues)
|
|
c.currIdx++
|
|
c.emptyBucketCount--
|
|
return true
|
|
}
|
|
|
|
span := c.h.PositiveSpans[c.posSpansIdx]
|
|
if c.posSpansIdx == 0 && !c.initialized {
|
|
// Initializing.
|
|
c.currIdx = span.Offset
|
|
// The first bucket is an absolute value and not a delta with Zero bucket.
|
|
c.currCount = 0
|
|
c.initialized = true
|
|
}
|
|
|
|
c.currCount += c.h.PositiveBuckets[c.posBucketsIdx]
|
|
c.currCumulativeCount += uint64(c.currCount)
|
|
c.currUpper = getBound(c.currIdx, c.h.Schema, c.h.CustomValues)
|
|
|
|
c.posBucketsIdx++
|
|
c.idxInSpan++
|
|
c.currIdx++
|
|
if c.idxInSpan >= span.Length {
|
|
// Move to the next span. This one is done.
|
|
c.posSpansIdx++
|
|
c.idxInSpan = 0
|
|
if c.posSpansIdx < len(c.h.PositiveSpans) {
|
|
c.emptyBucketCount = c.h.PositiveSpans[c.posSpansIdx].Offset
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
func (c *cumulativeBucketIterator) At() Bucket[uint64] {
|
|
return Bucket[uint64]{
|
|
Upper: c.currUpper,
|
|
Lower: math.Inf(-1),
|
|
UpperInclusive: true,
|
|
LowerInclusive: true,
|
|
Count: c.currCumulativeCount,
|
|
Index: c.currIdx - 1,
|
|
}
|
|
}
|
|
|
|
// ReduceResolution reduces the histogram's spans, buckets into target schema.
|
|
// The target schema must be smaller than the current histogram's schema.
|
|
// This will panic if the histogram has custom buckets or if the target schema is
|
|
// a custom buckets schema.
|
|
func (h *Histogram) ReduceResolution(targetSchema int32) *Histogram {
|
|
if h.UsesCustomBuckets() {
|
|
panic("cannot reduce resolution when there are custom buckets")
|
|
}
|
|
if IsCustomBucketsSchema(targetSchema) {
|
|
panic("cannot reduce resolution to custom buckets schema")
|
|
}
|
|
if targetSchema >= h.Schema {
|
|
panic(fmt.Errorf("cannot reduce resolution from schema %d to %d", h.Schema, targetSchema))
|
|
}
|
|
|
|
h.PositiveSpans, h.PositiveBuckets = reduceResolution(
|
|
h.PositiveSpans, h.PositiveBuckets, h.Schema, targetSchema, true, true,
|
|
)
|
|
h.NegativeSpans, h.NegativeBuckets = reduceResolution(
|
|
h.NegativeSpans, h.NegativeBuckets, h.Schema, targetSchema, true, true,
|
|
)
|
|
h.Schema = targetSchema
|
|
return h
|
|
}
|