mirror of https://github.com/prometheus/prometheus
1173 lines
32 KiB
Go
1173 lines
32 KiB
Go
// Copyright 2013 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package promql
|
|
|
|
import (
|
|
"flag"
|
|
"fmt"
|
|
"math"
|
|
"runtime"
|
|
"sort"
|
|
"time"
|
|
|
|
"golang.org/x/net/context"
|
|
|
|
clientmodel "github.com/prometheus/client_golang/model"
|
|
|
|
"github.com/prometheus/prometheus/stats"
|
|
"github.com/prometheus/prometheus/storage/local"
|
|
"github.com/prometheus/prometheus/storage/metric"
|
|
)
|
|
|
|
var (
|
|
stalenessDelta = flag.Duration("query.staleness-delta", 300*time.Second, "Staleness delta allowance during expression evaluations.")
|
|
defaultQueryTimeout = flag.Duration("query.timeout", 2*time.Minute, "Maximum time a query may take before being aborted.")
|
|
maxConcurrentQueries = flag.Int("query.max-concurrency", 20, "Maximum number of queries executed concurrently.")
|
|
)
|
|
|
|
// SampleStream is a stream of Values belonging to an attached COWMetric.
|
|
type SampleStream struct {
|
|
Metric clientmodel.COWMetric `json:"metric"`
|
|
Values metric.Values `json:"values"`
|
|
}
|
|
|
|
// Sample is a single sample belonging to a COWMetric.
|
|
type Sample struct {
|
|
Metric clientmodel.COWMetric `json:"metric"`
|
|
Value clientmodel.SampleValue `json:"value"`
|
|
Timestamp clientmodel.Timestamp `json:"timestamp"`
|
|
}
|
|
|
|
// Scalar is a scalar value evaluated at the set timestamp.
|
|
type Scalar struct {
|
|
Value clientmodel.SampleValue
|
|
Timestamp clientmodel.Timestamp
|
|
}
|
|
|
|
func (s *Scalar) String() string {
|
|
return fmt.Sprintf("scalar: %v @[%v]", s.Value, s.Timestamp)
|
|
}
|
|
|
|
// String is a string value evaluated at the set timestamp.
|
|
type String struct {
|
|
Value string
|
|
Timestamp clientmodel.Timestamp
|
|
}
|
|
|
|
func (s *String) String() string {
|
|
return s.Value
|
|
}
|
|
|
|
// Vector is basically only an alias for clientmodel.Samples, but the
|
|
// contract is that in a Vector, all Samples have the same timestamp.
|
|
type Vector []*Sample
|
|
|
|
// Matrix is a slice of SampleStreams that implements sort.Interface and
|
|
// has a String method.
|
|
type Matrix []*SampleStream
|
|
|
|
// Len implements sort.Interface.
|
|
func (matrix Matrix) Len() int {
|
|
return len(matrix)
|
|
}
|
|
|
|
// Less implements sort.Interface.
|
|
func (matrix Matrix) Less(i, j int) bool {
|
|
return matrix[i].Metric.String() < matrix[j].Metric.String()
|
|
}
|
|
|
|
// Swap implements sort.Interface.
|
|
func (matrix Matrix) Swap(i, j int) {
|
|
matrix[i], matrix[j] = matrix[j], matrix[i]
|
|
}
|
|
|
|
// Value is a generic interface for values resulting from a query evaluation.
|
|
type Value interface {
|
|
Type() ExprType
|
|
String() string
|
|
}
|
|
|
|
func (Matrix) Type() ExprType { return ExprMatrix }
|
|
func (Vector) Type() ExprType { return ExprVector }
|
|
func (*Scalar) Type() ExprType { return ExprScalar }
|
|
func (*String) Type() ExprType { return ExprString }
|
|
|
|
// Result holds the resulting value of an execution or an error
|
|
// if any occurred.
|
|
type Result struct {
|
|
Err error
|
|
Value Value
|
|
}
|
|
|
|
// Vector returns a vector if the result value is one. An error is returned if
|
|
// the result was an error or the result value is not a vector.
|
|
func (r *Result) Vector() (Vector, error) {
|
|
if r.Err != nil {
|
|
return nil, r.Err
|
|
}
|
|
v, ok := r.Value.(Vector)
|
|
if !ok {
|
|
return nil, fmt.Errorf("query result is not a vector")
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
// Matrix returns a matrix. An error is returned if
|
|
// the result was an error or the result value is not a matrix.
|
|
func (r *Result) Matrix() (Matrix, error) {
|
|
if r.Err != nil {
|
|
return nil, r.Err
|
|
}
|
|
v, ok := r.Value.(Matrix)
|
|
if !ok {
|
|
return nil, fmt.Errorf("query result is not a matrix")
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
// Scalar returns a scalar value. An error is returned if
|
|
// the result was an error or the result value is not a scalar.
|
|
func (r *Result) Scalar() (*Scalar, error) {
|
|
if r.Err != nil {
|
|
return nil, r.Err
|
|
}
|
|
v, ok := r.Value.(*Scalar)
|
|
if !ok {
|
|
return nil, fmt.Errorf("query result is not a scalar")
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
func (r *Result) String() string {
|
|
if r.Err != nil {
|
|
return r.Err.Error()
|
|
}
|
|
if r.Value == nil {
|
|
return ""
|
|
}
|
|
return r.Value.String()
|
|
}
|
|
|
|
type (
|
|
// ErrQueryTimeout is returned if a query timed out during processing.
|
|
ErrQueryTimeout string
|
|
// ErrQueryCanceled is returned if a query was canceled during processing.
|
|
ErrQueryCanceled string
|
|
)
|
|
|
|
func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) }
|
|
func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) }
|
|
|
|
// A Query is derived from an a raw query string and can be run against an engine
|
|
// it is associated with.
|
|
type Query interface {
|
|
// Exec processes the query and
|
|
Exec() *Result
|
|
// Statements returns the parsed statements of the query.
|
|
Statements() Statements
|
|
// Stats returns statistics about the lifetime of the query.
|
|
Stats() *stats.TimerGroup
|
|
// Cancel signals that a running query execution should be aborted.
|
|
Cancel()
|
|
}
|
|
|
|
// query implements the Query interface.
|
|
type query struct {
|
|
// The original query string.
|
|
q string
|
|
// Statements of the parsed query.
|
|
stmts Statements
|
|
// Timer stats for the query execution.
|
|
stats *stats.TimerGroup
|
|
// Cancelation function for the query.
|
|
cancel func()
|
|
|
|
// The engine against which the query is executed.
|
|
ng *Engine
|
|
}
|
|
|
|
// Statements implements the Query interface.
|
|
func (q *query) Statements() Statements {
|
|
return q.stmts
|
|
}
|
|
|
|
// Stats implements the Query interface.
|
|
func (q *query) Stats() *stats.TimerGroup {
|
|
return q.stats
|
|
}
|
|
|
|
// Cancel implements the Query interface.
|
|
func (q *query) Cancel() {
|
|
if q.cancel != nil {
|
|
q.cancel()
|
|
}
|
|
}
|
|
|
|
// Exec implements the Query interface.
|
|
func (q *query) Exec() *Result {
|
|
res, err := q.ng.exec(q)
|
|
return &Result{Err: err, Value: res}
|
|
}
|
|
|
|
// contextDone returns an error if the context was canceled or timed out.
|
|
func contextDone(ctx context.Context, env string) error {
|
|
select {
|
|
case <-ctx.Done():
|
|
err := ctx.Err()
|
|
switch err {
|
|
case context.Canceled:
|
|
return ErrQueryCanceled(env)
|
|
case context.DeadlineExceeded:
|
|
return ErrQueryTimeout(env)
|
|
default:
|
|
return err
|
|
}
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Engine handles the liftetime of queries from beginning to end.
|
|
// It is connected to a storage.
|
|
type Engine struct {
|
|
// The storage on which the engine operates.
|
|
storage local.Storage
|
|
|
|
// The base context for all queries and its cancellation function.
|
|
baseCtx context.Context
|
|
cancelQueries func()
|
|
// The gate limiting the maximum number of concurrent and waiting queries.
|
|
gate *queryGate
|
|
}
|
|
|
|
// NewEngine returns a new engine.
|
|
func NewEngine(storage local.Storage) *Engine {
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
return &Engine{
|
|
storage: storage,
|
|
baseCtx: ctx,
|
|
cancelQueries: cancel,
|
|
gate: newQueryGate(*maxConcurrentQueries),
|
|
}
|
|
}
|
|
|
|
// Stop the engine and cancel all running queries.
|
|
func (ng *Engine) Stop() {
|
|
ng.cancelQueries()
|
|
}
|
|
|
|
// NewInstantQuery returns an evaluation query for the given expression at the given time.
|
|
func (ng *Engine) NewInstantQuery(es string, ts clientmodel.Timestamp) (Query, error) {
|
|
return ng.NewRangeQuery(es, ts, ts, 0)
|
|
}
|
|
|
|
// NewRangeQuery returns an evaluation query for the given time range and with
|
|
// the resolution set by the interval.
|
|
func (ng *Engine) NewRangeQuery(qs string, start, end clientmodel.Timestamp, interval time.Duration) (Query, error) {
|
|
expr, err := ParseExpr(qs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
es := &EvalStmt{
|
|
Expr: expr,
|
|
Start: start,
|
|
End: end,
|
|
Interval: interval,
|
|
}
|
|
|
|
qry := &query{
|
|
q: qs,
|
|
stmts: Statements{es},
|
|
ng: ng,
|
|
stats: stats.NewTimerGroup(),
|
|
}
|
|
return qry, nil
|
|
}
|
|
|
|
// testStmt is an internal helper statement that allows execution
|
|
// of an arbitrary function during handling. It is used to test the Engine.
|
|
type testStmt func(context.Context) error
|
|
|
|
func (testStmt) String() string { return "test statement" }
|
|
func (testStmt) DotGraph() string { return "test statement" }
|
|
func (testStmt) stmt() {}
|
|
|
|
func (ng *Engine) newTestQuery(stmts ...Statement) Query {
|
|
qry := &query{
|
|
q: "test statement",
|
|
stmts: Statements(stmts),
|
|
ng: ng,
|
|
stats: stats.NewTimerGroup(),
|
|
}
|
|
return qry
|
|
}
|
|
|
|
// exec executes the query.
|
|
//
|
|
// At this point per query only one EvalStmt is evaluated. Alert and record
|
|
// statements are not handled by the Engine.
|
|
func (ng *Engine) exec(q *query) (Value, error) {
|
|
const env = "query execution"
|
|
|
|
ctx, cancel := context.WithTimeout(q.ng.baseCtx, *defaultQueryTimeout)
|
|
q.cancel = cancel
|
|
|
|
queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start()
|
|
|
|
if err := ng.gate.Start(ctx); err != nil {
|
|
return nil, err
|
|
}
|
|
defer ng.gate.Done()
|
|
|
|
queueTimer.Stop()
|
|
|
|
// Cancel when execution is done or an error was raised.
|
|
defer q.cancel()
|
|
|
|
evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start()
|
|
defer evalTimer.Stop()
|
|
|
|
for _, stmt := range q.stmts {
|
|
// The base context might already be canceled on the first iteration (e.g. during shutdown).
|
|
if err := contextDone(ctx, env); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch s := stmt.(type) {
|
|
case *EvalStmt:
|
|
// Currently, only one execution statement per query is allowed.
|
|
return ng.execEvalStmt(ctx, q, s)
|
|
|
|
case testStmt:
|
|
if err := s(ctx); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
default:
|
|
panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", stmt))
|
|
}
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
// execEvalStmt evaluates the expression of an evaluation statement for the given time range.
|
|
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, error) {
|
|
prepareTimer := query.stats.GetTimer(stats.TotalQueryPreparationTime).Start()
|
|
analyzeTimer := query.stats.GetTimer(stats.QueryAnalysisTime).Start()
|
|
|
|
// Only one execution statement per query is allowed.
|
|
analyzer := &Analyzer{
|
|
Storage: ng.storage,
|
|
Expr: s.Expr,
|
|
Start: s.Start,
|
|
End: s.End,
|
|
}
|
|
err := analyzer.Analyze(ctx)
|
|
if err != nil {
|
|
analyzeTimer.Stop()
|
|
prepareTimer.Stop()
|
|
return nil, err
|
|
}
|
|
analyzeTimer.Stop()
|
|
|
|
preloadTimer := query.stats.GetTimer(stats.PreloadTime).Start()
|
|
closer, err := analyzer.Prepare(ctx)
|
|
if err != nil {
|
|
preloadTimer.Stop()
|
|
prepareTimer.Stop()
|
|
return nil, err
|
|
}
|
|
defer closer.Close()
|
|
|
|
preloadTimer.Stop()
|
|
prepareTimer.Stop()
|
|
|
|
evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start()
|
|
// Instant evaluation.
|
|
if s.Start == s.End && s.Interval == 0 {
|
|
evaluator := &evaluator{
|
|
Timestamp: s.Start,
|
|
ctx: ctx,
|
|
}
|
|
val, err := evaluator.Eval(s.Expr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
evalTimer.Stop()
|
|
return val, nil
|
|
}
|
|
|
|
// Range evaluation.
|
|
sampleStreams := map[clientmodel.Fingerprint]*SampleStream{}
|
|
for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) {
|
|
|
|
if err := contextDone(ctx, "range evaluation"); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
evaluator := &evaluator{
|
|
Timestamp: ts,
|
|
ctx: ctx,
|
|
}
|
|
val, err := evaluator.Eval(s.Expr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
vector, ok := val.(Vector)
|
|
if !ok {
|
|
return nil, fmt.Errorf("value for expression %q must be of type vector but is %s", s.Expr, val.Type())
|
|
}
|
|
|
|
for _, sample := range vector {
|
|
samplePair := metric.SamplePair{
|
|
Value: sample.Value,
|
|
Timestamp: sample.Timestamp,
|
|
}
|
|
fp := sample.Metric.Metric.Fingerprint()
|
|
if sampleStreams[fp] == nil {
|
|
sampleStreams[fp] = &SampleStream{
|
|
Metric: sample.Metric,
|
|
Values: metric.Values{samplePair},
|
|
}
|
|
} else {
|
|
sampleStreams[fp].Values = append(sampleStreams[fp].Values, samplePair)
|
|
}
|
|
|
|
}
|
|
}
|
|
evalTimer.Stop()
|
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start()
|
|
matrix := Matrix{}
|
|
for _, sampleStream := range sampleStreams {
|
|
matrix = append(matrix, sampleStream)
|
|
}
|
|
appendTimer.Stop()
|
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start()
|
|
sort.Sort(matrix)
|
|
sortTimer.Stop()
|
|
|
|
return matrix, nil
|
|
}
|
|
|
|
// An evaluator evaluates given expressions at a fixed timestamp. It is attached to an
|
|
// engine through which it connects to a storage and reports errors. On timeout or
|
|
// cancellation of its context it terminates.
|
|
type evaluator struct {
|
|
ctx context.Context
|
|
|
|
Timestamp clientmodel.Timestamp
|
|
}
|
|
|
|
// fatalf causes a panic with the input formatted into an error.
|
|
func (ev *evaluator) errorf(format string, args ...interface{}) {
|
|
ev.error(fmt.Errorf(format, args...))
|
|
}
|
|
|
|
// fatal causes a panic with the given error.
|
|
func (ev *evaluator) error(err error) {
|
|
panic(err)
|
|
}
|
|
|
|
// recover is the handler that turns panics into returns from the top level of evaluation.
|
|
func (ev *evaluator) recover(errp *error) {
|
|
e := recover()
|
|
if e != nil {
|
|
// Do not recover from runtime errors.
|
|
if _, ok := e.(runtime.Error); ok {
|
|
panic(e)
|
|
}
|
|
*errp = e.(error)
|
|
}
|
|
}
|
|
|
|
// evalScalar attempts to evaluate e to a scalar value and errors otherwise.
|
|
func (ev *evaluator) evalScalar(e Expr) *Scalar {
|
|
val := ev.eval(e)
|
|
sv, ok := val.(*Scalar)
|
|
if !ok {
|
|
ev.errorf("expected scalar but got %s", val.Type())
|
|
}
|
|
return sv
|
|
}
|
|
|
|
// evalVector attempts to evaluate e to a vector value and errors otherwise.
|
|
func (ev *evaluator) evalVector(e Expr) Vector {
|
|
val := ev.eval(e)
|
|
vec, ok := val.(Vector)
|
|
if !ok {
|
|
ev.errorf("expected vector but got %s", val.Type())
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// evalInt attempts to evaluate e into an integer and errors otherwise.
|
|
func (ev *evaluator) evalInt(e Expr) int {
|
|
sc := ev.evalScalar(e)
|
|
return int(sc.Value)
|
|
}
|
|
|
|
// evalFloat attempts to evaluate e into a float and errors otherwise.
|
|
func (ev *evaluator) evalFloat(e Expr) float64 {
|
|
sc := ev.evalScalar(e)
|
|
return float64(sc.Value)
|
|
}
|
|
|
|
// evalMatrix attempts to evaluate e into a matrix and errors otherwise.
|
|
func (ev *evaluator) evalMatrix(e Expr) Matrix {
|
|
val := ev.eval(e)
|
|
mat, ok := val.(Matrix)
|
|
if !ok {
|
|
ev.errorf("expected matrix but got %s", val.Type())
|
|
}
|
|
return mat
|
|
}
|
|
|
|
// evalMatrixBounds attempts to evaluate e to matrix boundaries and errors otherwise.
|
|
func (ev *evaluator) evalMatrixBounds(e Expr) Matrix {
|
|
ms, ok := e.(*MatrixSelector)
|
|
if !ok {
|
|
ev.errorf("matrix bounds can only be evaluated for matrix selectors, got %T", e)
|
|
}
|
|
return ev.matrixSelectorBounds(ms)
|
|
}
|
|
|
|
// evalOneOf evaluates e and errors unless the result is of one of the given types.
|
|
func (ev *evaluator) evalOneOf(e Expr, t1, t2 ExprType) Value {
|
|
val := ev.eval(e)
|
|
if val.Type() != t1 && val.Type() != t2 {
|
|
ev.errorf("expected %s or %s but got %s", t1, t2, val.Type())
|
|
}
|
|
return val
|
|
}
|
|
|
|
func (ev *evaluator) Eval(expr Expr) (v Value, err error) {
|
|
defer ev.recover(&err)
|
|
return ev.eval(expr), nil
|
|
}
|
|
|
|
// eval evaluates the given expression as the given AST expression node requires.
|
|
func (ev *evaluator) eval(expr Expr) Value {
|
|
// This is the top-level evaluation method.
|
|
// Thus, we check for timeout/cancellation here.
|
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
|
ev.error(err)
|
|
}
|
|
|
|
switch e := expr.(type) {
|
|
case *AggregateExpr:
|
|
vector := ev.evalVector(e.Expr)
|
|
return ev.aggregation(e.Op, e.Grouping, e.KeepExtraLabels, vector)
|
|
|
|
case *BinaryExpr:
|
|
lhs := ev.evalOneOf(e.LHS, ExprScalar, ExprVector)
|
|
rhs := ev.evalOneOf(e.RHS, ExprScalar, ExprVector)
|
|
|
|
switch lt, rt := lhs.Type(), rhs.Type(); {
|
|
case lt == ExprScalar && rt == ExprScalar:
|
|
return &Scalar{
|
|
Value: scalarBinop(e.Op, lhs.(*Scalar).Value, rhs.(*Scalar).Value),
|
|
Timestamp: ev.Timestamp,
|
|
}
|
|
|
|
case lt == ExprVector && rt == ExprVector:
|
|
return ev.vectorBinop(e.Op, lhs.(Vector), rhs.(Vector), e.VectorMatching)
|
|
|
|
case lt == ExprVector && rt == ExprScalar:
|
|
return ev.vectorScalarBinop(e.Op, lhs.(Vector), rhs.(*Scalar), false)
|
|
|
|
case lt == ExprScalar && rt == ExprVector:
|
|
return ev.vectorScalarBinop(e.Op, rhs.(Vector), lhs.(*Scalar), true)
|
|
}
|
|
|
|
case *Call:
|
|
return e.Func.Call(ev, e.Args)
|
|
|
|
case *MatrixSelector:
|
|
return ev.matrixSelector(e)
|
|
|
|
case *NumberLiteral:
|
|
return &Scalar{Value: e.Val, Timestamp: ev.Timestamp}
|
|
|
|
case *ParenExpr:
|
|
return ev.eval(e.Expr)
|
|
|
|
case *StringLiteral:
|
|
return &String{Value: e.Val, Timestamp: ev.Timestamp}
|
|
|
|
case *UnaryExpr:
|
|
smpl := ev.evalScalar(e.Expr)
|
|
if e.Op == itemSUB {
|
|
smpl.Value = -smpl.Value
|
|
}
|
|
return smpl
|
|
|
|
case *VectorSelector:
|
|
return ev.vectorSelector(e)
|
|
}
|
|
panic(fmt.Errorf("unhandled expression of type: %T", expr))
|
|
}
|
|
|
|
// vectorSelector evaluates a *VectorSelector expression.
|
|
func (ev *evaluator) vectorSelector(node *VectorSelector) Vector {
|
|
vec := Vector{}
|
|
for fp, it := range node.iterators {
|
|
sampleCandidates := it.GetValueAtTime(ev.Timestamp.Add(-node.Offset))
|
|
samplePair := chooseClosestSample(sampleCandidates, ev.Timestamp.Add(-node.Offset))
|
|
if samplePair != nil {
|
|
vec = append(vec, &Sample{
|
|
Metric: node.metrics[fp],
|
|
Value: samplePair.Value,
|
|
Timestamp: ev.Timestamp,
|
|
})
|
|
}
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// matrixSelector evaluates a *MatrixSelector expression.
|
|
func (ev *evaluator) matrixSelector(node *MatrixSelector) Matrix {
|
|
interval := metric.Interval{
|
|
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset),
|
|
NewestInclusive: ev.Timestamp.Add(-node.Offset),
|
|
}
|
|
|
|
sampleStreams := make([]*SampleStream, 0, len(node.iterators))
|
|
for fp, it := range node.iterators {
|
|
samplePairs := it.GetRangeValues(interval)
|
|
if len(samplePairs) == 0 {
|
|
continue
|
|
}
|
|
|
|
if node.Offset != 0 {
|
|
for _, sp := range samplePairs {
|
|
sp.Timestamp = sp.Timestamp.Add(node.Offset)
|
|
}
|
|
}
|
|
|
|
sampleStream := &SampleStream{
|
|
Metric: node.metrics[fp],
|
|
Values: samplePairs,
|
|
}
|
|
sampleStreams = append(sampleStreams, sampleStream)
|
|
}
|
|
return Matrix(sampleStreams)
|
|
}
|
|
|
|
// matrixSelectorBounds evaluates the boundaries of a *MatrixSelector.
|
|
func (ev *evaluator) matrixSelectorBounds(node *MatrixSelector) Matrix {
|
|
interval := metric.Interval{
|
|
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset),
|
|
NewestInclusive: ev.Timestamp.Add(-node.Offset),
|
|
}
|
|
|
|
sampleStreams := make([]*SampleStream, 0, len(node.iterators))
|
|
for fp, it := range node.iterators {
|
|
samplePairs := it.GetBoundaryValues(interval)
|
|
if len(samplePairs) == 0 {
|
|
continue
|
|
}
|
|
|
|
sampleStream := &SampleStream{
|
|
Metric: node.metrics[fp],
|
|
Values: samplePairs,
|
|
}
|
|
sampleStreams = append(sampleStreams, sampleStream)
|
|
}
|
|
return Matrix(sampleStreams)
|
|
}
|
|
|
|
// vectorBinop evaluates a binary operation between two vector values.
|
|
func (ev *evaluator) vectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching) Vector {
|
|
result := make(Vector, 0, len(rhs))
|
|
// The control flow below handles one-to-one or many-to-one matching.
|
|
// For one-to-many, swap sidedness and account for the swap when calculating
|
|
// values.
|
|
if matching.Card == CardOneToMany {
|
|
lhs, rhs = rhs, lhs
|
|
}
|
|
// All samples from the rhs hashed by the matching label/values.
|
|
rm := map[uint64]*Sample{}
|
|
// Maps the hash of the label values used for matching to the hashes of the label
|
|
// values of the include labels (if any). It is used to keep track of already
|
|
// inserted samples.
|
|
added := map[uint64][]uint64{}
|
|
|
|
// Add all rhs samples to a map so we can easily find matches later.
|
|
for _, rs := range rhs {
|
|
hash := hashForMetric(rs.Metric.Metric, matching.On)
|
|
// The rhs is guaranteed to be the 'one' side. Having multiple samples
|
|
// with the same hash means that the matching is many-to-many,
|
|
// which is not supported.
|
|
if _, found := rm[hash]; matching.Card != CardManyToMany && found {
|
|
// Many-to-many matching not allowed.
|
|
ev.errorf("many-to-many matching not allowed")
|
|
}
|
|
// In many-to-many matching the entry is simply overwritten. It can thus only
|
|
// be used to check whether any matching rhs entry exists but not retrieve them all.
|
|
rm[hash] = rs
|
|
}
|
|
|
|
// For all lhs samples find a respective rhs sample and perform
|
|
// the binary operation.
|
|
for _, ls := range lhs {
|
|
hash := hashForMetric(ls.Metric.Metric, matching.On)
|
|
// Any lhs sample we encounter in an OR operation belongs to the result.
|
|
if op == itemLOR {
|
|
ls.Metric = resultMetric(op, ls, nil, matching)
|
|
result = append(result, ls)
|
|
added[hash] = nil // Ensure matching rhs sample is not added later.
|
|
continue
|
|
}
|
|
|
|
rs, found := rm[hash] // Look for a match in the rhs vector.
|
|
if !found {
|
|
continue
|
|
}
|
|
var value clientmodel.SampleValue
|
|
var keep bool
|
|
|
|
if op == itemLAND {
|
|
value = ls.Value
|
|
keep = true
|
|
} else {
|
|
if _, exists := added[hash]; matching.Card == CardOneToOne && exists {
|
|
// Many-to-one matching must be explicit.
|
|
ev.errorf("many-to-one matching must be explicit")
|
|
}
|
|
// Account for potentially swapped sidedness.
|
|
vl, vr := ls.Value, rs.Value
|
|
if matching.Card == CardOneToMany {
|
|
vl, vr = vr, vl
|
|
}
|
|
value, keep = vectorElemBinop(op, vl, vr)
|
|
}
|
|
|
|
if keep {
|
|
metric := resultMetric(op, ls, rs, matching)
|
|
// Check if the same label set has been added for a many-to-one matching before.
|
|
if matching.Card == CardManyToOne || matching.Card == CardOneToMany {
|
|
insHash := clientmodel.SignatureForLabels(metric.Metric, matching.Include)
|
|
if ihs, exists := added[hash]; exists {
|
|
for _, ih := range ihs {
|
|
if ih == insHash {
|
|
ev.errorf("metric with label set has already been matched")
|
|
}
|
|
}
|
|
added[hash] = append(ihs, insHash)
|
|
} else {
|
|
added[hash] = []uint64{insHash}
|
|
}
|
|
}
|
|
ns := &Sample{
|
|
Metric: metric,
|
|
Value: value,
|
|
Timestamp: ev.Timestamp,
|
|
}
|
|
result = append(result, ns)
|
|
added[hash] = added[hash] // Set existance to true.
|
|
}
|
|
}
|
|
|
|
// Add all remaining samples in the rhs in an OR operation if they
|
|
// have not been matched up with a lhs sample.
|
|
if op == itemLOR {
|
|
for hash, rs := range rm {
|
|
if _, exists := added[hash]; !exists {
|
|
rs.Metric = resultMetric(op, rs, nil, matching)
|
|
result = append(result, rs)
|
|
}
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// vectorScalarBinop evaluates a binary operation between a vector and a scalar.
|
|
func (ev *evaluator) vectorScalarBinop(op itemType, lhs Vector, rhs *Scalar, swap bool) Vector {
|
|
vector := make(Vector, 0, len(lhs))
|
|
|
|
for _, lhsSample := range lhs {
|
|
lv, rv := lhsSample.Value, rhs.Value
|
|
// lhs always contains the vector. If the original position was different
|
|
// swap for calculating the value.
|
|
if swap {
|
|
lv, rv = rv, lv
|
|
}
|
|
value, keep := vectorElemBinop(op, lv, rv)
|
|
if keep {
|
|
lhsSample.Value = value
|
|
if shouldDropMetricName(op) {
|
|
lhsSample.Metric.Delete(clientmodel.MetricNameLabel)
|
|
}
|
|
vector = append(vector, lhsSample)
|
|
}
|
|
}
|
|
return vector
|
|
}
|
|
|
|
// scalarBinop evaluates a binary operation between two scalars.
|
|
func scalarBinop(op itemType, lhs, rhs clientmodel.SampleValue) clientmodel.SampleValue {
|
|
switch op {
|
|
case itemADD:
|
|
return lhs + rhs
|
|
case itemSUB:
|
|
return lhs - rhs
|
|
case itemMUL:
|
|
return lhs * rhs
|
|
case itemDIV:
|
|
return lhs / rhs
|
|
case itemMOD:
|
|
if rhs != 0 {
|
|
return clientmodel.SampleValue(int(lhs) % int(rhs))
|
|
}
|
|
return clientmodel.SampleValue(math.NaN())
|
|
case itemEQL:
|
|
return btos(lhs == rhs)
|
|
case itemNEQ:
|
|
return btos(lhs != rhs)
|
|
case itemGTR:
|
|
return btos(lhs > rhs)
|
|
case itemLSS:
|
|
return btos(lhs < rhs)
|
|
case itemGTE:
|
|
return btos(lhs >= rhs)
|
|
case itemLTE:
|
|
return btos(lhs <= rhs)
|
|
}
|
|
panic(fmt.Errorf("operator %q not allowed for scalar operations", op))
|
|
}
|
|
|
|
// vectorElemBinop evaluates a binary operation between two vector elements.
|
|
func vectorElemBinop(op itemType, lhs, rhs clientmodel.SampleValue) (clientmodel.SampleValue, bool) {
|
|
switch op {
|
|
case itemADD:
|
|
return lhs + rhs, true
|
|
case itemSUB:
|
|
return lhs - rhs, true
|
|
case itemMUL:
|
|
return lhs * rhs, true
|
|
case itemDIV:
|
|
return lhs / rhs, true
|
|
case itemMOD:
|
|
if rhs != 0 {
|
|
return clientmodel.SampleValue(int(lhs) % int(rhs)), true
|
|
}
|
|
return clientmodel.SampleValue(math.NaN()), true
|
|
case itemEQL:
|
|
return lhs, lhs == rhs
|
|
case itemNEQ:
|
|
return lhs, lhs != rhs
|
|
case itemGTR:
|
|
return lhs, lhs > rhs
|
|
case itemLSS:
|
|
return lhs, lhs < rhs
|
|
case itemGTE:
|
|
return lhs, lhs >= rhs
|
|
case itemLTE:
|
|
return lhs, lhs <= rhs
|
|
}
|
|
panic(fmt.Errorf("operator %q not allowed for operations between vectors", op))
|
|
}
|
|
|
|
// labelIntersection returns the metric of common label/value pairs of two input metrics.
|
|
func labelIntersection(metric1, metric2 clientmodel.COWMetric) clientmodel.COWMetric {
|
|
for label, value := range metric1.Metric {
|
|
if metric2.Metric[label] != value {
|
|
metric1.Delete(label)
|
|
}
|
|
}
|
|
return metric1
|
|
}
|
|
|
|
type groupedAggregation struct {
|
|
labels clientmodel.COWMetric
|
|
value clientmodel.SampleValue
|
|
valuesSquaredSum clientmodel.SampleValue
|
|
groupCount int
|
|
}
|
|
|
|
// aggregation evaluates an aggregation operation on a vector.
|
|
func (ev *evaluator) aggregation(op itemType, grouping clientmodel.LabelNames, keepExtra bool, vector Vector) Vector {
|
|
|
|
result := map[uint64]*groupedAggregation{}
|
|
|
|
for _, sample := range vector {
|
|
groupingKey := clientmodel.SignatureForLabels(sample.Metric.Metric, grouping)
|
|
|
|
groupedResult, ok := result[groupingKey]
|
|
// Add a new group if it doesn't exist.
|
|
if !ok {
|
|
var m clientmodel.COWMetric
|
|
if keepExtra {
|
|
m = sample.Metric
|
|
m.Delete(clientmodel.MetricNameLabel)
|
|
} else {
|
|
m = clientmodel.COWMetric{
|
|
Metric: clientmodel.Metric{},
|
|
Copied: true,
|
|
}
|
|
for _, l := range grouping {
|
|
if v, ok := sample.Metric.Metric[l]; ok {
|
|
m.Set(l, v)
|
|
}
|
|
}
|
|
}
|
|
result[groupingKey] = &groupedAggregation{
|
|
labels: m,
|
|
value: sample.Value,
|
|
valuesSquaredSum: sample.Value * sample.Value,
|
|
groupCount: 1,
|
|
}
|
|
continue
|
|
}
|
|
// Add the sample to the existing group.
|
|
if keepExtra {
|
|
groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric)
|
|
}
|
|
|
|
switch op {
|
|
case itemSum:
|
|
groupedResult.value += sample.Value
|
|
case itemAvg:
|
|
groupedResult.value += sample.Value
|
|
groupedResult.groupCount++
|
|
case itemMax:
|
|
if groupedResult.value < sample.Value {
|
|
groupedResult.value = sample.Value
|
|
}
|
|
case itemMin:
|
|
if groupedResult.value > sample.Value {
|
|
groupedResult.value = sample.Value
|
|
}
|
|
case itemCount:
|
|
groupedResult.groupCount++
|
|
case itemStdvar, itemStddev:
|
|
groupedResult.value += sample.Value
|
|
groupedResult.valuesSquaredSum += sample.Value * sample.Value
|
|
groupedResult.groupCount++
|
|
default:
|
|
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
|
}
|
|
}
|
|
|
|
// Construct the result vector from the aggregated groups.
|
|
resultVector := make(Vector, 0, len(result))
|
|
|
|
for _, aggr := range result {
|
|
switch op {
|
|
case itemAvg:
|
|
aggr.value = aggr.value / clientmodel.SampleValue(aggr.groupCount)
|
|
case itemCount:
|
|
aggr.value = clientmodel.SampleValue(aggr.groupCount)
|
|
case itemStdvar:
|
|
avg := float64(aggr.value) / float64(aggr.groupCount)
|
|
aggr.value = clientmodel.SampleValue(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)
|
|
case itemStddev:
|
|
avg := float64(aggr.value) / float64(aggr.groupCount)
|
|
aggr.value = clientmodel.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg))
|
|
default:
|
|
// For other aggregations, we already have the right value.
|
|
}
|
|
sample := &Sample{
|
|
Metric: aggr.labels,
|
|
Value: aggr.value,
|
|
Timestamp: ev.Timestamp,
|
|
}
|
|
resultVector = append(resultVector, sample)
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// btos returns 1 if b is true, 0 otherwise.
|
|
func btos(b bool) clientmodel.SampleValue {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// shouldDropMetricName returns whether the metric name should be dropped in the
|
|
// result of the op operation.
|
|
func shouldDropMetricName(op itemType) bool {
|
|
switch op {
|
|
case itemADD, itemSUB, itemDIV, itemMUL, itemMOD:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// resultMetric returns the metric for the given sample(s) based on the vector
|
|
// binary operation and the matching options.
|
|
func resultMetric(op itemType, ls, rs *Sample, matching *VectorMatching) clientmodel.COWMetric {
|
|
if len(matching.On) == 0 || op == itemLOR || op == itemLAND {
|
|
if shouldDropMetricName(op) {
|
|
ls.Metric.Delete(clientmodel.MetricNameLabel)
|
|
}
|
|
return ls.Metric
|
|
}
|
|
|
|
m := clientmodel.Metric{}
|
|
for _, ln := range matching.On {
|
|
m[ln] = ls.Metric.Metric[ln]
|
|
}
|
|
|
|
for _, ln := range matching.Include {
|
|
// Included labels from the `group_x` modifier are taken from the "many"-side.
|
|
v, ok := ls.Metric.Metric[ln]
|
|
if ok {
|
|
m[ln] = v
|
|
}
|
|
}
|
|
return clientmodel.COWMetric{false, m}
|
|
}
|
|
|
|
// hashForMetric calculates a hash value for the given metric based on the matching
|
|
// options for the binary operation.
|
|
func hashForMetric(metric clientmodel.Metric, withLabels clientmodel.LabelNames) uint64 {
|
|
var labels clientmodel.LabelNames
|
|
|
|
if len(withLabels) > 0 {
|
|
var match bool
|
|
for _, ln := range withLabels {
|
|
if _, match = metric[ln]; !match {
|
|
break
|
|
}
|
|
}
|
|
// If the metric does not contain the labels to match on, build the hash
|
|
// over the whole metric to give it a unique hash.
|
|
if !match {
|
|
labels = make(clientmodel.LabelNames, 0, len(metric))
|
|
for ln := range metric {
|
|
labels = append(labels, ln)
|
|
}
|
|
} else {
|
|
labels = withLabels
|
|
}
|
|
} else {
|
|
labels = make(clientmodel.LabelNames, 0, len(metric))
|
|
for ln := range metric {
|
|
if ln != clientmodel.MetricNameLabel {
|
|
labels = append(labels, ln)
|
|
}
|
|
}
|
|
}
|
|
return clientmodel.SignatureForLabels(metric, labels)
|
|
}
|
|
|
|
// chooseClosestSample chooses the closest sample of a list of samples
|
|
// surrounding a given target time. If samples are found both before and after
|
|
// the target time, the sample value is interpolated between these. Otherwise,
|
|
// the single closest sample is returned verbatim.
|
|
func chooseClosestSample(samples metric.Values, timestamp clientmodel.Timestamp) *metric.SamplePair {
|
|
var closestBefore *metric.SamplePair
|
|
var closestAfter *metric.SamplePair
|
|
for _, candidate := range samples {
|
|
delta := candidate.Timestamp.Sub(timestamp)
|
|
// Samples before target time.
|
|
if delta < 0 {
|
|
// Ignore samples outside of staleness policy window.
|
|
if -delta > *stalenessDelta {
|
|
continue
|
|
}
|
|
// Ignore samples that are farther away than what we've seen before.
|
|
if closestBefore != nil && candidate.Timestamp.Before(closestBefore.Timestamp) {
|
|
continue
|
|
}
|
|
sample := candidate
|
|
closestBefore = &sample
|
|
}
|
|
|
|
// Samples after target time.
|
|
if delta >= 0 {
|
|
// Ignore samples outside of staleness policy window.
|
|
if delta > *stalenessDelta {
|
|
continue
|
|
}
|
|
// Ignore samples that are farther away than samples we've seen before.
|
|
if closestAfter != nil && candidate.Timestamp.After(closestAfter.Timestamp) {
|
|
continue
|
|
}
|
|
sample := candidate
|
|
closestAfter = &sample
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case closestBefore != nil && closestAfter != nil:
|
|
return interpolateSamples(closestBefore, closestAfter, timestamp)
|
|
case closestBefore != nil:
|
|
return closestBefore
|
|
default:
|
|
return closestAfter
|
|
}
|
|
}
|
|
|
|
// interpolateSamples interpolates a value at a target time between two
|
|
// provided sample pairs.
|
|
func interpolateSamples(first, second *metric.SamplePair, timestamp clientmodel.Timestamp) *metric.SamplePair {
|
|
dv := second.Value - first.Value
|
|
dt := second.Timestamp.Sub(first.Timestamp)
|
|
|
|
dDt := dv / clientmodel.SampleValue(dt)
|
|
offset := clientmodel.SampleValue(timestamp.Sub(first.Timestamp))
|
|
|
|
return &metric.SamplePair{
|
|
Value: first.Value + (offset * dDt),
|
|
Timestamp: timestamp,
|
|
}
|
|
}
|
|
|
|
// A queryGate controls the maximum number of concurrently running and waiting queries.
|
|
type queryGate struct {
|
|
ch chan struct{}
|
|
}
|
|
|
|
// newQueryGate returns a query gate that limits the number of queries
|
|
// being concurrently executed.
|
|
func newQueryGate(length int) *queryGate {
|
|
return &queryGate{
|
|
ch: make(chan struct{}, length),
|
|
}
|
|
}
|
|
|
|
// Start blocks until the gate has a free spot or the context is done.
|
|
func (g *queryGate) Start(ctx context.Context) error {
|
|
select {
|
|
case <-ctx.Done():
|
|
return contextDone(ctx, "query queue")
|
|
case g.ch <- struct{}{}:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Done releases a single spot in the gate.
|
|
func (g *queryGate) Done() {
|
|
select {
|
|
case <-g.ch:
|
|
default:
|
|
panic("engine.queryGate.Done: more operations done than started")
|
|
}
|
|
}
|