You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/storage/local/delta.go

359 lines
10 KiB

// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package local
import (
"encoding/binary"
"fmt"
"io"
"math"
"github.com/prometheus/common/model"
)
// The 21-byte header of a delta-encoded chunk looks like:
//
// - time delta bytes: 1 bytes
// - value delta bytes: 1 bytes
// - is integer: 1 byte
// - base time: 8 bytes
// - base value: 8 bytes
// - used buf bytes: 2 bytes
const (
deltaHeaderBytes = 21
deltaHeaderTimeBytesOffset = 0
deltaHeaderValueBytesOffset = 1
deltaHeaderIsIntOffset = 2
deltaHeaderBaseTimeOffset = 3
deltaHeaderBaseValueOffset = 11
deltaHeaderBufLenOffset = 19
)
// A deltaEncodedChunk adaptively stores sample timestamps and values with a
// delta encoding of various types (int, float) and bit widths. However, once 8
// bytes would be needed to encode a delta value, a fall-back to the absolute
// numbers happens (so that timestamps are saved directly as int64 and values as
// float64). It implements the chunk interface.
type deltaEncodedChunk []byte
// newDeltaEncodedChunk returns a newly allocated deltaEncodedChunk.
func newDeltaEncodedChunk(tb, vb deltaBytes, isInt bool, length int) *deltaEncodedChunk {
if tb < 1 {
panic("need at least 1 time delta byte")
}
if length < deltaHeaderBytes+16 {
panic(fmt.Errorf(
"chunk length %d bytes is insufficient, need at least %d",
length, deltaHeaderBytes+16,
))
}
c := make(deltaEncodedChunk, deltaHeaderIsIntOffset+1, length)
c[deltaHeaderTimeBytesOffset] = byte(tb)
c[deltaHeaderValueBytesOffset] = byte(vb)
if vb < d8 && isInt { // Only use int for fewer than 8 value delta bytes.
c[deltaHeaderIsIntOffset] = 1
} else {
c[deltaHeaderIsIntOffset] = 0
}
return &c
}
// add implements chunk.
func (c deltaEncodedChunk) add(s model.SamplePair) ([]chunk, error) {
// TODO(beorn7): Since we return &c, this method might cause an unnecessary allocation.
if c.len() == 0 {
c = c[:deltaHeaderBytes]
binary.LittleEndian.PutUint64(c[deltaHeaderBaseTimeOffset:], uint64(s.Timestamp))
binary.LittleEndian.PutUint64(c[deltaHeaderBaseValueOffset:], math.Float64bits(float64(s.Value)))
}
remainingBytes := cap(c) - len(c)
sampleSize := c.sampleSize()
// Do we generally have space for another sample in this chunk? If not,
// overflow into a new one.
if remainingBytes < sampleSize {
return addToOverflowChunk(&c, s)
}
baseValue := c.baseValue()
dt := s.Timestamp - c.baseTime()
if dt < 0 {
return nil, fmt.Errorf("time delta is less than zero: %v", dt)
}
dv := s.Value - baseValue
tb := c.timeBytes()
vb := c.valueBytes()
isInt := c.isInt()
// If the new sample is incompatible with the current encoding, reencode the
// existing chunk data into new chunk(s).
ntb, nvb, nInt := tb, vb, isInt
if isInt && !isInt64(dv) {
// int->float.
nvb = d4
nInt = false
} else if !isInt && vb == d4 && baseValue+model.SampleValue(float32(dv)) != s.Value {
// float32->float64.
nvb = d8
} else {
if tb < d8 {
// Maybe more bytes for timestamp.
ntb = max(tb, bytesNeededForUnsignedTimestampDelta(dt))
}
if c.isInt() && vb < d8 {
// Maybe more bytes for sample value.
nvb = max(vb, bytesNeededForIntegerSampleValueDelta(dv))
}
}
if tb != ntb || vb != nvb || isInt != nInt {
if len(c)*2 < cap(c) {
return transcodeAndAdd(newDeltaEncodedChunk(ntb, nvb, nInt, cap(c)), &c, s)
}
// Chunk is already half full. Better create a new one and save the transcoding efforts.
return addToOverflowChunk(&c, s)
}
offset := len(c)
c = c[:offset+sampleSize]
switch tb {
case d1:
c[offset] = byte(dt)
case d2:
binary.LittleEndian.PutUint16(c[offset:], uint16(dt))
case d4:
binary.LittleEndian.PutUint32(c[offset:], uint32(dt))
case d8:
// Store the absolute value (no delta) in case of d8.
binary.LittleEndian.PutUint64(c[offset:], uint64(s.Timestamp))
default:
return nil, fmt.Errorf("invalid number of bytes for time delta: %d", tb)
}
offset += int(tb)
if c.isInt() {
switch vb {
case d0:
// No-op. Constant value is stored as base value.
case d1:
c[offset] = byte(int8(dv))
case d2:
binary.LittleEndian.PutUint16(c[offset:], uint16(int16(dv)))
case d4:
binary.LittleEndian.PutUint32(c[offset:], uint32(int32(dv)))
// d8 must not happen. Those samples are encoded as float64.
default:
return nil, fmt.Errorf("invalid number of bytes for integer delta: %d", vb)
}
} else {
switch vb {
case d4:
binary.LittleEndian.PutUint32(c[offset:], math.Float32bits(float32(dv)))
case d8:
// Store the absolute value (no delta) in case of d8.
binary.LittleEndian.PutUint64(c[offset:], math.Float64bits(float64(s.Value)))
default:
return nil, fmt.Errorf("invalid number of bytes for floating point delta: %d", vb)
}
}
return []chunk{&c}, nil
}
// clone implements chunk.
func (c deltaEncodedChunk) clone() chunk {
clone := make(deltaEncodedChunk, len(c), cap(c))
copy(clone, c)
return &clone
}
// firstTime implements chunk.
func (c deltaEncodedChunk) firstTime() model.Time {
return c.baseTime()
}
// newIterator implements chunk.
func (c *deltaEncodedChunk) newIterator() chunkIterator {
return newIndexAccessingChunkIterator(c.len(), &deltaEncodedIndexAccessor{
c: *c,
baseT: c.baseTime(),
baseV: c.baseValue(),
tBytes: c.timeBytes(),
vBytes: c.valueBytes(),
isInt: c.isInt(),
})
}
// marshal implements chunk.
func (c deltaEncodedChunk) marshal(w io.Writer) error {
if len(c) > math.MaxUint16 {
panic("chunk buffer length would overflow a 16 bit uint.")
}
binary.LittleEndian.PutUint16(c[deltaHeaderBufLenOffset:], uint16(len(c)))
n, err := w.Write(c[:cap(c)])
if err != nil {
return err
}
if n != cap(c) {
return fmt.Errorf("wanted to write %d bytes, wrote %d", cap(c), n)
}
return nil
}
// marshalToBuf implements chunk.
func (c deltaEncodedChunk) marshalToBuf(buf []byte) error {
if len(c) > math.MaxUint16 {
panic("chunk buffer length would overflow a 16 bit uint")
}
binary.LittleEndian.PutUint16(c[deltaHeaderBufLenOffset:], uint16(len(c)))
n := copy(buf, c)
if n != len(c) {
return fmt.Errorf("wanted to copy %d bytes to buffer, copied %d", len(c), n)
}
return nil
}
// unmarshal implements chunk.
func (c *deltaEncodedChunk) unmarshal(r io.Reader) error {
*c = (*c)[:cap(*c)]
if _, err := io.ReadFull(r, *c); err != nil {
return err
}
l := binary.LittleEndian.Uint16((*c)[deltaHeaderBufLenOffset:])
if int(l) > cap(*c) {
return fmt.Errorf("chunk length exceeded during unmarshaling: %d", l)
}
*c = (*c)[:l]
return nil
}
// unmarshalFromBuf implements chunk.
func (c *deltaEncodedChunk) unmarshalFromBuf(buf []byte) error {
*c = (*c)[:cap(*c)]
copy(*c, buf)
l := binary.LittleEndian.Uint16((*c)[deltaHeaderBufLenOffset:])
if int(l) > cap(*c) {
return fmt.Errorf("chunk length exceeded during unmarshaling: %d", l)
}
*c = (*c)[:l]
return nil
}
// encoding implements chunk.
func (c deltaEncodedChunk) encoding() chunkEncoding { return delta }
func (c deltaEncodedChunk) timeBytes() deltaBytes {
return deltaBytes(c[deltaHeaderTimeBytesOffset])
}
func (c deltaEncodedChunk) valueBytes() deltaBytes {
return deltaBytes(c[deltaHeaderValueBytesOffset])
}
func (c deltaEncodedChunk) isInt() bool {
return c[deltaHeaderIsIntOffset] == 1
}
func (c deltaEncodedChunk) baseTime() model.Time {
return model.Time(binary.LittleEndian.Uint64(c[deltaHeaderBaseTimeOffset:]))
}
func (c deltaEncodedChunk) baseValue() model.SampleValue {
return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(c[deltaHeaderBaseValueOffset:])))
}
func (c deltaEncodedChunk) sampleSize() int {
return int(c.timeBytes() + c.valueBytes())
}
func (c deltaEncodedChunk) len() int {
if len(c) < deltaHeaderBytes {
return 0
}
return (len(c) - deltaHeaderBytes) / c.sampleSize()
}
// deltaEncodedIndexAccessor implements indexAccessor.
type deltaEncodedIndexAccessor struct {
c deltaEncodedChunk
baseT model.Time
baseV model.SampleValue
tBytes, vBytes deltaBytes
isInt bool
lastErr error
}
func (acc *deltaEncodedIndexAccessor) err() error {
return acc.lastErr
}
func (acc *deltaEncodedIndexAccessor) timestampAtIndex(idx int) model.Time {
offset := deltaHeaderBytes + idx*int(acc.tBytes+acc.vBytes)
switch acc.tBytes {
case d1:
return acc.baseT + model.Time(uint8(acc.c[offset]))
case d2:
return acc.baseT + model.Time(binary.LittleEndian.Uint16(acc.c[offset:]))
case d4:
return acc.baseT + model.Time(binary.LittleEndian.Uint32(acc.c[offset:]))
case d8:
// Take absolute value for d8.
return model.Time(binary.LittleEndian.Uint64(acc.c[offset:]))
default:
acc.lastErr = fmt.Errorf("invalid number of bytes for time delta: %d", acc.tBytes)
return model.Earliest
}
}
func (acc *deltaEncodedIndexAccessor) sampleValueAtIndex(idx int) model.SampleValue {
offset := deltaHeaderBytes + idx*int(acc.tBytes+acc.vBytes) + int(acc.tBytes)
if acc.isInt {
switch acc.vBytes {
case d0:
return acc.baseV
case d1:
return acc.baseV + model.SampleValue(int8(acc.c[offset]))
case d2:
return acc.baseV + model.SampleValue(int16(binary.LittleEndian.Uint16(acc.c[offset:])))
case d4:
return acc.baseV + model.SampleValue(int32(binary.LittleEndian.Uint32(acc.c[offset:])))
// No d8 for ints.
default:
acc.lastErr = fmt.Errorf("invalid number of bytes for integer delta: %d", acc.vBytes)
return 0
}
} else {
switch acc.vBytes {
case d4:
return acc.baseV + model.SampleValue(math.Float32frombits(binary.LittleEndian.Uint32(acc.c[offset:])))
case d8:
// Take absolute value for d8.
return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(acc.c[offset:])))
default:
acc.lastErr = fmt.Errorf("invalid number of bytes for floating point delta: %d", acc.vBytes)
return 0
}
}
}